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The differential equation

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0

arises both in the quantum scattering theory of non-relativistic electrons from polar molecules and
ions, and, in the guise of Teukolsky’s equations, in the theory of radiation processes involving black
holes. This article discusses analytic representations of solutions to this equation. Previous results
of Hylleraas [E. Hylleraas, Z. Phys. 71, 739 (1931)], Jaffé [G. Jaffé, Z. Phys 87, 535 (1934)],
Baber and Hassé [W.G. Baber and H.R. Hassé, Proc. Cambridge Philos. Soc. 25, 564 (1935)],
and Chu and Stratton [L.J. Chu and J.A. Stratton, Journal of Mathematics and Physics, 20, 259,
(1941)] are reviewed, and a rigorous proof is given for the convergence of Stratton’s spherical Bessel
function expansion for the ordinary spheroidal wavefunctions. An integral is derived that relates
the eigensolutions of Hylleraas to those of Jaffé. The integral relation is shown to give an integral
equation for the scalar field quasi-normal modes of black holes, and to lead to irregular second
solutions to the equation. New representations of the general solutions are presented as series
of Coulomb wavefunctions and confluent hypergeometric functions. The Coulomb wavefunction
expansion may be regarded as a generalization of Stratton’s representation for ordinary spheroidal
wave functions, and has been fully implemented and tested on a digital computer. Both solutions
given by the new algorithms are analytic in the variable x and the parameters B1, B2, B3, ω,
x0, and η, and are uniformly convergent on any interval bounded away from x0. They are the
first representations for generalized spheroidal wave functions which allow the direct evaluation of
asymptotic magnitude and phase.
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SOLUTIONS 11
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I. INTRODUCTION

Generalized Spheroidal Wave Equations have been the topic of much applied mathematical research. They
are usually characterized as being second order linear differential equations having two regular singular
points and one confluently irregular singular point. In this article the problem of generating general solutions
to the specific equation

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0 (1)

(where B1, B2, B3, ω, η, and x0 are constants) is approached from the point of view of the computational
physicist. Equation (1) will hereafter be refered to as “the generalized spheroidal wave equation.” The
intervals of physical interest are both [0 ≤ x ≤ x0] and [x0 ≤ x < ∞). Representations for solutions on
the bounded interval [0 ≤ x ≤ x0] are well understood, and are reviewed here only to illustrate properties
of three-term recurrence relations. The purpose of this paper is to present new representations for solutions
on the semi-infinite interval [x0 ≤ x <∞).

The differential equation (1) arises in two specific physical contexts: the separation of the one particle
Schrödinger equation in prolate spheroidal coordinates, and the separation of linearized perturbation
equations on the backgrounds of Schwarzschild and Kerr black holes. (Teukolsky’s equations governing
perturbations of the Kerr metric are generalized spheroidal wave equations.) This paper is an exposition
on neither quantum mechanics nor general relativity, and the physics underlying these equations will be
mentioned only in the context of boundary conditions relevant to the solutions.

Researchers in both astrophysics and molecular physics have long recognized the frequent inadequacy
of numerical integration techniques in supplying satisfactory solutions to generalized spheroidal wave
equations.1,2,3 The original goal of this study was the development of analytic representations for solutions
to equation (1) on the interval [x0 ≤ x < ∞) that would be useful in the investigation of resonance
phenomena in low energy molecular scattering processes. For that end I sought a representation that was
both analytic in the independent variable x and the parametersB1, B2, B3, ω, x0, and η, and from which the
analytic behavior of the solutions as x→∞ could readily be inferred. The power of the resulting Coulomb
wavefunction expansion is demonstrated in an article on the spectral decomposition of the perturbation
response of Schwarzschild black holes.4 The present paper presents the new algorithm, and how I arrived at
it.

In the process it reviews earlier work of Hylleraas, Jaffé, Baber and Hassé, Chu and Stratton, and
Morse. These authors’ results form a natural starting point for this study, which may be considered to be
a continuation of their previous efforts, and are a seemingly forgotten topic in themselves. Review of their
work is particularly worthwhile in view of enduring misconceptions concerning the convergence properties
of some of their representations.

Lastly, I have included discussion of two representations that I have not yet used in computational
problems, nor verified numerically. They are the second solutions of Jaffé’s type presented in Sec. IV
C, and the confluent hypergeometric function expansions of Sec. VII. The first of these (if it is correct)
may eventually be of considerable computational utility. The second is more difficult to evaluate. The
representations of which I have made extensive computational use are the regular Jaffé series discussed
in Sec. IV A, and the Coulomb wave function expansion presented in Sec. VI. The present (July, 1985)
computer implementation of these algorithms is discussed briefly in the Summary. The paper is outlined as
follows:

Section II shows the equivalence of the separated parts of the one-particle Schrödinger equation in
prolate spheroidal coordinates to the Teukolsky equations that describe the perturbations of the Weyl tensor
for Kerr black holes. The angular and radial parts of both sets of equations are cast in the common form of
equation (1), and solutions at the singular points x = 0, x = x0, and x =∞ are discussed.

Section III briefly reviews the theory of three-term recurrence relations and illustrates the usefulness
thereof in generating spheroidal harmonics and in obtaining the eigenvalues of the angular differential
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equation on the interval [0 ≤ x ≤ x0]. The origins of the method are lost in antiquity, and most of
the material in this section is stolen from more recent articles by W.G. Baber and H.R. Hassé,5 and W.
Gautschi.6

Section IV turns to the study of solutions on the interval [x0 ≤ x < ∞), and starts with a review of
the eigensolutions of Egil Hylleraas7 and George Jaffé.8 Convergence properties of both representations
are discussed in detail, and an integral relating the two is derived. Jaffé’s solution is of critical importance
since it can be generalized to all values of the frequency ω, and provides solutions that are regular and
analytic as x → x0. Section IV C contains a rather lengthly digression on the possibility of generating
second solutions to the differential equation by means of a confluent hypergeometric function expansion
related to the Laguerre polynomial expansion of Hylleraas. The resulting expressions have yet to be verified
numerically.

Section V reviews Stratton’s classic solution to the ordinary spheroidal wave equation, and generalizes
Stratton’s solution to the case of the Schrödinger’s equation for an electron in the field of a finite dipole.
Rigorous proofs of the convergence of the resulting spherical Bessel function expansions are discussed in
detail, and form the basis for the full generalization in terms of Coulomb wave functions presented in Sec.
VI. The discussion in Sec. V is important because it shows for the first time how analytic solutions may be
constructed for a spheroidal wave equation in a space with a nonzero potential.

Section VI presents the ultimate result of this study: the expansion of solutions to the fully generalized
spheroidal wave equation (1) in convergent series of Coulomb wavefunctions. The solutions provided by
this representation are both irregular as x→ x0, but are analytic in the operational sense that they allow the
asymptotic (large x) behavior of any solution to the generalized spheroidal wave equation to be computed
directly from the value of the solution and its derivative at any finite x greater than x0. The algorithm
has seen full computational implementation, and has been used to characterize the nature of the perturbation
response of the Schwarzschild black hole to an appreciably greater extent than has previously been possible.4
Sections V and VI may be read independently from section IV.

Section VII presents another expansion for the generalized spheroidal wavefunctions as series of
confluent hypergeometric functions.

Section VIII looks at what happens to the generalized spheroidal wave equation and its Coulomb
wavefunction solutions (Sec. VI) in the confluence as x0 → 0. This happens at the extreme Kerr limit
of black hole rotation, and concludes the present analysis of generalized spheroidal wave functions.

Section IX is a Summary and contains a brief description of the computer programs that generate the
Jaffè solutions and the Coulomb wave-function expansions.

Lastly, it has not been possible for the present paper to reference all the literature pertaining to spheroidal
wave functions, much of which is due to the efforts of Josef Miexner, Friedrich Schäfke, and Gerhard Wolf.
The interested reader will find a comprehensive bibliography in their recent monograph.9
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II. ORIGINS OF THE EQUATION AND ASYMPTOTIC SOLUTIONS

Generalized Spheroidal Wave Equations are ordinary differential equations with two regular singular points
and one confluently irregular singular point. Although the Helmholtz equation separates in spheroidal
coordinates into particular, and special, examples of such equations (ordinary spheroidal wave equations),10

the earliest physical context of a generalized spheroidal wave equation arose in the consideration of the
quantum mechanics of hydrogen molecule-like ions. Early investigations into this subject are reviewed by
Baber and Hassé,5 and much of the discussion in this and the following two sections is excerpted from
their article. Generalized spheroidal wave equations also result from the separation of linearized covariant
wave equations on black hole background metrics, and the quasi-normal modes of the perturbations of
these geometries may be found by the same techniques used to determine the bound-state eigenfunctions
of the hydrogen molecule ion.11 This section explores the similarity of the differential equations in the
astrophysical problem to corresponding differential equations in the molecular ion problem, and reduces
them both to the form of equation (1).

A. Schrödinger’s Equation for Hydrogen Molecule-like Ions

If N1 and N2 are the charges on two fixed nuclei A and B, 2a is the distance AB between them, and r1 and
r2 are the distances of an electron from A and B respectively, then the prolate spheroidal coordinates λ and
µ are defined by λ = (r1 + r2)/2a and µ = (r1− r2)/2a. At large values of r1 and r2, λ becomes a simple
measure of the distance from the molecule or ion, and is referred to as the “radial coordinate.” Under the
same conditions µ reduces to the cosine of the usual polar angle θ, and µ is termed the “angular coordinate.”
The time-independent Schrödinger equation52ψ + (E − V )ψ = 0 separates if ψ = Ψ(λ)Φ(µ) exp(imφ),
where φ is the azimuthal angle about the axisAB. A description of this separation is given in Eyring, Walter,
and Kimball.12 The resulting ordinary differential equations for Ψ and Φ are

d

dλ

[
(λ2 − 1)

dΨ

dλ

]
+

[
ω2λ2 + 2a(N1 +N2)λ−Alm −

m2

λ2 − 1

]
Ψ = 0 (2)

and
d

dµ

[
(1− µ2)dΦ

dµ

]
+

[
−ω2µ2 − 2a(N1 −N2)µ+Alm −

m2

1− µ2

]
Φ = 0 (3)

where ω2 = 2a2E in atomic units.
Equations (2) and (3) are generalized spheroidal wave equations. If we write

Ψ = (λ2 − 1)m/2f(λ) and Φ = (1− µ2)m/2g(µ), the differential equations for f and g are

(λ2 − 1)f,λλ + 2(m+ 1)λf,λ +
[
ω2λ2 + 2a(N1 +N2)λ+m(m+ 1)−Alm

]
f = 0 (4)

and
(1− µ2)g,µµ − 2(m+ 1)µg,µ −

[
ω2µ2 + 2a(N1 −N2)µ+m(m+ 1)−Alm

]
g = 0 . (5)

The form (1) is obtained if we let x = λ+ 1 in equation (4), and x = µ+ 1 in equation (5) :

x(x− 2)f,xx + 2(m+ 1)(x− 1)f,x +[
ω2x(x− 2) + 2a(N1 +N2)(x− 2) + ω2 + 2a(N1 +N2) +m(m+ 1)−Alm

]
f = 0

(6)

x(x− 2)g,xx + 2(m+ 1)(x− 1)g,x +[
ω2x(x− 2) + 2a(N1 −N2)(x− 2) + ω2 + 2a(N1 −N2) +m(m+ 1)−Alm

]
g = 0 .

(7)

Generalized spheroidal wave equations are characterized by two regular and one confluently irregular
singular points. These occur at x = 0, x = x0, and at x = ∞, respectively. For equations (6) and (7)
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the regular singularities correspond to the physical locations of the two nuclei, which are at the foci of the
coordinate system, λ = 1 and µ = ±1. If

lim
x→0

y ∼ xk1 , and lim
x→x0

y ∼ (x− x0)k2 ,

then the indices k1 and k2 take the values

k1 = 0, 1 +B1/x0 , and k2 = 0, 1−B2 −B1/x0 .

For equations (6) and (7) these values are 0,−m both for k1 and for k2.

B. Covariant Wave Equation on Schwarzschild and Kerr Backgrounds

A separable linearized partial differential wave equation obeyed by components of weak electromagnetic and
gravitational fields on the background geometry of the Schwarzschild black hole was derived through the
efforts of Wheeler,13 Regge and Wheeler,14 Zerilli,15 Chandrasekhar,16 and Chandrasekhar and Detweiler.17

Analysis of wave equations on the Kerr geometry of rotating black holes was provided by Teukolsky.18

Generalized Spheroidal Wave Equations result in each case.

Schwarzschild Geometry

The Schwarzschild Geometry is spherically symmetric, and the partial differential equation for the field
components separates in polar spatial coordinates r, θ, and φ, and Schwarzschild’s time coordinate t. These
are the Schwarzschild coordinates.

Denote either a massless scalar field or a component of the electromagnetic or gravitational fields by a
generic field function Φ(t, r, θ, φ). Fourier analyze and expand Φ in spherical harmonics as

Φ(t, r, θ, φ) =
1

2π

∫ ∞
−∞

e−iωt

(∑
l

1

r
ψl(r, ω)Yl0(θ, φ)

)
dω . (8)

The homogeneous differential equation obeyed by the fourier component ψl(r) is

r(r − 1)ψl,rr + ψl,r +

[
ω2r3

r − 1
− l(l + 1) +

s2 − 1

r

]
ψl = 0 , (9)

where the coordinates t and r have been scaled so that the horizon, which usually appears at r = 2M , is
now at r = 1. The parameter s is the spin of the field, and takes the values 0, 1, or 2 depending on whether
Φ is respectively a component of the massless scalar, electromagnetic, or gravitational field.

The history of the derivation of these perturbation equations is long and rich. The derivation of the
radial component of the scalar wave equation [s = 0 in Eq. (9)] on the Schwarzschild background is a
straightforward exercise in perturbation theory.19,20 The s = 1 equation for electromagnetic perturbations
was derived by Wheeler in 1955,13 and the s = 2 equation for odd parity gravitational perturbations
by Regge and Wheeler a few years later.14 A very similar equation obeyed by even parity gravitational
perturbations was obtained by Zerilli in 1970,15 and the equivalence of Zerilli’s even parity equation to
Regge and Wheeler’s odd parity equation (Eq. (9) with s = 2) was demonstrated by Chandrasekhar16 and
Chandrasekhar and Detweiler in 1975.17 This twenty years of effort has been summarized by Professor
Chandrasekhar in chapter 4 of his recent book.21

Equation (9) may be put in the form of equation (1) by means of the substitution

ψl(r, ω) = r1+s(r − 1)−iωy(r, ω) . (10)
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The differential equation for y is

r(r − 1)y,rr + [2(s+ 1− iω)r − (2s+ 1)]y,r+

[ω2r(r − 1) + 2ω2(r − 1) + 2ω2 − l(l + 1) + s(s+ 1)− (2s+ 1)iω]y = 0
(11)

and the indicial structure at the regular singular points r = 0 and r = 1 is given by

y
r→0−→ rk1 , y

r→1−→ (r − 1)k2 ,

where k1 = 0,−2s and k2 = 0, 2iω. With the signs for ω chosen in equations (8) and (10), the exterior (i.e.,
1 ≤ r <∞) solution y that is regular at r = 1 corresponds, for Re(ω) > 0, to a field function that radiates
into the horizon. This is the physically meaningful case, but a second exterior solution may be found simply
by replacing ω by −ω in equations (10) and (11).

Kerr Geometry

The geometry of the rotating black hole has oblate spheroidal nature, and the wave equation for the
components of the massless fields can be separated in the oblate spheroidal spatial coordinates λ, µ, and φ,
and a time-like coordinate t. The coordinates λ and µ may be defined as in Sec. II A for prolate spheroids,
but the axis of oblate rotation is the semi-minor axis of the family of ellipses parameterized by constant
values of λ. The oblate spheroidal coordinate φ measures the azimuthal angle about the semi-minor axis.
The singularities of the coordinate system, which are the fixed locations of the two foci for prolate spheroids,
become a singular ring of radius a when the foci rotate about the semi-minor axis.

Kerr’s spatial coordinates r and θ are simply related to the oblate spheroidal coordinates λ and µ by22

r = a(λ2 − 1)1/2 and θ = sin−1 µ .

Simplification of the Kerr metric is obtained by the introduction of the Boyer-Lindquist azimuthal coordinate
φ̄, which is related to the azimuthal angle φ and the ”radial” coordinate r by

dφ̄ = dφ+ a(r2 − 2Mr + a2)−1dr .

I will follow the usual convention of dropping the “¯” from φ̄ and denote the Boyer-Lindquist coordinates
simply by t, r, θ, and φ. These coordinates reduce to Schwarzschild’s coordinates as a → 0. The Kerr
metric in Boyer-Lindquist coordinates is

ds2 =
(1− 2Mr/Σ)dt2 + (4Mar sin2(θ)/Σ)dtdφ− (Σ/∆)dr2 − Σdθ2

− sin2(θ)(r2 + a2 − 2Ma2r sin2(θ)/Σ)dφ2
(12)

where
Σ = r2 + a2 cos2 θ ,

and
∆ = r2 − 2Mr + a2 .

It is convenient to define one last angular coordinate u = cos(θ) = ±(1− µ2)
1
2 . The field function

Φ(t, r, u, φ) can then be expanded as

Φ(t, r, u, φ) =
1

2π

∫ ∞
−∞

e−iωt
∞∑
l=|s|

l∑
m=−l

eimφSlm(u)Rlm(r)dω (13)
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and, after a rescaling of t and r so that 2M = 1, the following differential equations obtained18,1 for the
angular function S(u) and the radial function R(r):[

(1− u2)Slm,u
]
,u

+

[
a2ω2u2 − 2aωsu+ s+Alm −

(m+ su)2

1− u2

]
Slm = 0 (14)

and
∆Rlm,rr + (s+ 1)(2r − 1)Rlm,r + V (r)Rlm = 0 (15)

where

V (r) =

{ [
(r2 + a2)2ω2 − 2amωr + a2m2 + is

(
am(2r − 1)− ω(r2 − a2)

)]
∆−1

+
[
2isωr − a2ω2 −Alm

] }
Equations (14) and (15) are the Kerr geometry linearized wave equation analogs to the Schrödinger prolate
spheroidal equations (2) and (3) . The functions Rlm and and Slm are referred to as “Teukolsky’s
functions”,21 and I will now show that they are, in fact, generalized spheroidal wave functions.

Define an auxiliary rotation parameter b by b = (1 − 4a2)1/2, and define r+ and r− to be the zeros of
∆, so that ∆ = (r − r−)(r − r+). Then r± = (1 ± b)/2, and r = r+ corresponds to the event horizon.
The solutions of equations (15) and (14) at the regular singularities u = ±1 and r = r± can be found in the
usual way: if

lim
u→−1

Slm ∼ (1 + u)k1 , and lim
u→+1

Slm ∼ (1− u)k2 , (16)

then
k1 = ±1

2
(m− s) , and k2 = ±1

2
(m+ s) .

Similarly if
lim
r→r−

Rlm ∼ (r − r−)k− , and lim
r→r+

Rlm ∼ (r − r+)k+ ,

then
k− = − i

b
(ωr− − am) , −s+

i

b
(ωr− − am) ,

and
k+ =

i

b
(ωr+ − am) , −s− i

b
(ωr+ − am) .

The physically meaningful solutions to the angular equation (14) are regular at the axis
(u = ±1), so the usual choices for k1 and k2 are k1 = |m− s|/2 and k2 = |m+ s|/2. Similarly, the usual
exterior solutions to the radial equation are those which correspond to fields radiating into the event horizon
at r = r+. This corresponds to k+ = −s− i(ωr+−am)/b. Boyer-Lindquist coordinates are not well suited
to analysis of the physics of the interior problem, but the choice k− = −s+ i(ωr− − am)/b turns out to be
convenient for the present study restricted to just the differential equation. Letting

Rlm = (r − r−)−s+
i
b
(ωr−−am)(r − r+)−s−

i
b
(ωr+−am)y(r − r−) (17)

and
Slm = (1 + u)

1
2
|m−s|(1− u)

1
2
|m+s|g(u) (18)

then the differential equations for y and g are

x(x− b)y,xx + [2(1− s− iω)x+ (s− 1 + 2iω)b− 2i(ωr+ − am)]y,x+

[ω2x(x− b) + 2(ω + is)ω(x− b) + (1 + b− a2)ω2 + (2s− 1)iω + isωb− 2s−Alm]y = 0 ,
(19)

where x = r − r−, and

z(z − 2)g,zz + [2(k1 + k2 + 1)z − 2(2k1 + 1)]g,z + [−a2ω2z(z − 2)+

2aωsz − s−Alm − (s+ aω)2 + (k1 + k2)(k1 + k2 + 1)]g = 0 ,
(20)

where z = u+ 1 . These are generalized spheroidal wave equations of form (1).
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C. Exponents of the Solutions Near the Regular Singular Points x = 0 and x = x0, and Asymptotic Solutions

We may now take equation (1) to be our standard form for the generalized spheroidal wave equation:

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0 .

I recapitulate the solution forms at the regular singular points. If

lim
x→0

y ∼ xk1 , and lim
x→x0

y ∼ (x− x0)k2 , (21)

then
k1 = 0, 1 +B1/x0 and k2 = 0, 1−B2 −B1/x0 .

Asymptotic solutions are found through the substitution

y(x) = xB1/2x0(x− x0)−
1
2
(B2+B1/x0)v(x).

The differential equation for v(x) as x→∞ is approximately

d2v

dx2
+

[
ω2 − 2ηω

x
−

1
2B2(

1
2B2 − 1)−B3

x2
+O(x−3)

]
v = 0

so that two independent asymptotic solutions for equation (1) are

lim
x→∞

y+(x) = xB1/2x0(x− x0)−
1
2
(B2+B1/x0) [Gνa(η, ωx) + iFνa(η, ωx)]

[
1 +O(x−3)

]
(22)

and
lim
x→∞

y−(x) = xB1/2x0(x− x0)−
1
2
(B2+B1/x0) [Gνa(η, ωx)− iFνa(η, ωx)]

[
1 +O(x−3)

]
(23)

where Fνa(η, ωx) and Gνa(η, ωx) are the Coulomb wave functions of (usually complex) order
νa = 1

2 [−1± (1 +B2(B2 − 2)− 4B3)
1/2]. To lower order the asymptotic approximations simplify to

lim
x→∞

y±(x) ∼ x−(
1
2
B2±iη)e±iωx [1 +O(1/x)] . (24)

Coulomb wave functions will be discussed further in Sec. VI.

7



III. THREE-TERM RECURRENCE RELATIONS AND THE ANGULAR EIGENVALUE
PROBLEM

Every representation of generalized spheroidal wavefunctions discussed in this paper will involve either a
power series expansion, or an expansion in a series of special functions. Since the expansion coefficients in
each case will be defined by a three-term recurrence relation, a review of some properties of such relations
is in order. The discussion here will be quite brief, and is excerpted primarily from the first few sections
of the excellent article on three-term recurrence relations by Walter Gautschi.6 I illustrate the theory by a
simple and relevant example of a sequence determined by a three-term recurrence relation: the coefficients
for a power series solution to equation (1) about the regular singular point x = 0.

A. Power Series Solutions on [0 ≤ x ≤ x0]

Equation (1) was

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0 .

Following Baber and Hassé,5 a power series solution about x = 0 may be obtained by letting

y(x) = eiωx
∞∑
n=0

aθnx
n (25)

I use the superscript θ in this solution to denote its usual association with the angular equations (3) and (14).
The sequence of expansion coefficients {aθn : n = 1, 2, . . .} is defined by the three-term recurrence relation

αθ0a
θ
1 + βθ0a

θ
0 = 0

αθna
θ
n+1 + βθna

θ
n + γθna

θ
n−1 = 0 n = 1, 2 . . .

(26)

where
αθn = −x0n2 + (B1 − x0)n + B1

βθn = n2 + (B2 − 2iωx0 − 1)n + 2ηωx0 + iωB1 +B3

γθn = 2iωn + iω(B2 − 2)− 2ηω .
(27)

Equations (26) and (27) are equivalent to Baber and Hassé’s equation 10. I will take equation (26) to be my
standard form for a three-term recurrence relation. In Sec. 5 and Sec. 6 I will also discuss double-ended
sequences in which the index n runs from −∞ to +∞, as opposed to the single-ended variety considered
here.

Three-term recurrence relations, like second-order differential equations, possess two independent
solution sequences {An : n = 1, 2 . . .} and {Bn : n = 1, 2 . . .}. The two sequences frequently
have the property that lim

n→∞An/Bn = 0. The sequence {An : n = 1, 2 . . .} is then referred to as
the “solution sequence minimal as n → ∞”, or briefly, as minimal. Any nonminimal solution sequence
{Bn : n = 1, 2 . . .} is referred to as dominant (Gautschi, page 25). Dominant sequences are not unique, as
any multiple of the minimal solution may be added to them without destroying their dominant property. I
typically denote either type of sequence by the general sequence {an : n = 1, 2 . . .}. Whether the an are
minimal or dominant will be seen to depend on the ratio a1/a0.

The large n behavior of the expansion coefficients {aθn : n = 1, 2 . . .} may be analyzed by writing
equation (26) as

αθn
aθn+1

aθn
+ βθn + γθn

aθn−1
aθn

= 0 , (28)

dividing by n2, and keeping only the leading order terms in the result:

− x0
aθn+1

aθn
+ 1 +

2iω

n

aθn−1
aθn
≈ 0 . (29)
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We then see that the aθn are elements of the minimal solution sequence if

lim
n→∞

aθn
aθn−1

∼ −2iω

n
(30)

and the aθn are dominant if

lim
n→∞

aθn
aθn−1

=
1

x0
. (31)

The ratio of successive elements of the minimal solution sequence to the recurrence relation (26) is given
by the continued fraction6

aθn+1

aθn
=
−γθn+1

βθn+1 −
αθn+1γ

θ
n+2

βθn+2 −
αθn+2γ

θ
n+3

βθn+3 − · · ·
(32)

which for n = 0 gives
aθ1
aθ0

=
−γθ1
βθ1 −

αθ1γ
θ
2

βθ2 −
αθ2γ

θ
3

βθ3 − · · ·
. (33)

However, for single-ended sequences such as arise out of power series expansions, the first of equations (26)
requires that

aθ1
aθ0

= −β
θ
0

αθ0
. (34)

Equations (33) and (34) cannot both be satisfied for arbitrary values of the recurrence coefficients αθn, βθn,
and γθn, so that the general solution sequence to equation (26) is a dominant one and can usually be generated
by simple forward recursion from a chosen value of aθ0. The resulting power series (25) will converge for all
x of magnitude less than the magnitude of x0, but will diverge when |x| ≥ |x0|.

A power series solution for equation (1) about the singular point x = x0 may be obtained simply by
letting z = x− x0. Then equation (1) in this new variable becomes

z(z + x0)y,zz + (B1 +B2x0 +B2z)y,z + [ω2z(z + x0)− 2ηωz +B3]y = 0 (35)

which is of the same form as equation (1), and a power series solution about z = 0 can be generated in the
same manner as before. Such a solution could be useful in obtaining the behavior near x = x0 of solutions
on the exterior interval [x0 ≤ x < ∞). However, the radius of convergence of this series expansion is
just |x0|. It is no more useful in obtaining eigensolutions on [0 ≤ x ≤ x0] as the series (25), and is vastly
inferior to Jaffé’s solution on [x0 ≤ x <∞). Second power-series solutions, in the cases when 1 + B1/x0
or 1−B2 −B1/x0 are integers, may be found by the method of Frobenius.

B. The Angular Eigenvalue Problem

The prolate angular coordinate µ = (r1 − r2)/2a of equation (3) and the oblate angular coordinate u =
±(1 − µ2)1/2 of equation (14) play the same role in their respective wavefunctions, and the physically
meaningful solutions to either of equations (7) or (20) are those that are finite both at x = 0 and at x = x0
(i.e., µ or u equal ±1). These solutions are simple Sturmian eigensolutions, and are obtained for a given
value of ω if the angular separation constant Alm, which appears as part of the equation parameter B3 in the
βθn, can be adjusted so that equations (33) and (34) are both satisfied. If so, the resulting solution sequence
{aθn : n = 1, 2 . . .} will be purely minimal, and the power series (25) will converge at x = x0. Equating
the right-hand sides of equations (33) and (34) yields an implicit continued fraction equation for the angular
separation constant Alm :

0 = βθ0 −
αθ0γ

θ
1

βθ1 −
αθ1γ

θ
2

βθ2 −
αθ2γ

θ
3

βθ3 − · · ·
(36)

9



The α, β, and γ are defined as explicit functions of B3 and the other parameters of the differential equation
in equations (27), and equation (36) may be solved for Alm (that is, B3) by standard nonlinear root-search
techniques. The expansion coefficients aθn are then generated by downward recursion on (26), starting from
ratios given by (32) at a suitably large value of n.

Fackerell and Crossman23 have obtained a continued fraction equation for the eigenvalues of the spin-
weighted angular spheroidal equation (14) by expanding Slm(u) in a series of Jacobi polynomials, and
discuss the normalization properties of these functions (see also Breuer, Ryan, and Waller24). There is
probably an integral relating Fackerell and Crossman’s Jacobi polynomial solution with the power series
solution reviewed here. Hunter and Guerrieri25 have done a detailed Wentzel-Kramer-Brillouin-Jeffreys
(WKBJ) analysis of the angular equation for large values of Alm, which has provided analytic insight into
branch points associated with these eigenvalues. Their work might complement Ferrari and Mashoon’s26

WKBJ analysis of the Schwarzschild quasi-normal frequencies to provide useful insight into the large l
behavior of the Kerr quasi-normal frequencies. It is interesting that none of these recent studies of the
angular equation reference the early results of Wilson,27 or of Baber and Hassé.5 Fackerell and Crossman’s
expansions (19) and (20), for instance, apparently are independently derived generalizations of Baber and
Hassé’s expansions (30) and (33). The power series expansion I have given here (cf. equation (25)) is
equivalent to Baber and Hassé’s equation (34).
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IV. THE SOLUTIONS OF HYLLERAAS AND JAFFÉ, INTEGRAL RELATIONS, AND SECOND
SOLUTIONS

Although Egil Hylleraas is generally given credit for the first solution to the bound state problem of the
hydrogen molecule ion in 1931,7 the solution to equation (2) derived by George Jaffé in 19348 was the first
to contain a proof of convergence. Such proof did not exist for Hylleraas’ representation until W.G. Baber
and H.R. Hassé provided one in 1935.5 (Baber and Hassé apparently also made independent discovery of
Jaffé’s solution.) This section will discuss the eigensolutions of Hylleraas and Jaffé, and their convergence
properties. In particular, Jaffé’s representation will be shown to be simply convergent for noneigenfunction
solutions to equation (1), in addition to being uniformly convergent for eigenfunctions. An integral equation
for Sturmian eigenfunctions is derived and used to illuminate the relationship between the representations
of Hylleraas and Jaffé, and to express the solution to equation (1) that is regular as x → ∞ in terms of the
solution that is regular at x = x0.

A. The Solutions of Hylleraas and Jaffé on [x0 ≤ x <∞)

Equation (1) was

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0 .

Hylleraas, using hydrogen atom eigenfunctions as Ans‘̀atze, expanded the solution y(x) that is regular at
x = x0 in a series of Laguerre polynomials:

y = eiωx
∞∑
n=0

n!arn
Γ( 1

2
B2 + iη +B1/x0 + 1 + n)

LB2+B1/x0−1
n (−2iω(x− x0)) . (37)

(The superscript (r) on the expansion coefficients arn denotes they are related to solutions of “radial”
equations, such as (2), (9), and (15).)

Jaffé took a more rigorous approach and reasoned that since a power series expansion of solutions to
a differential equation about one regular singular point generally has a radius of convergence equal to the
distance from the point of expansion to the next nearest singular point, and that since the singular point at
x = 0 obstructs the convergence of a power series between x0 and ∞, the obvious solution to the power
series convergence problem was to rearrange the singular points so that the point x = x0 was moved to 0,
the point at ∞ was moved to 1, and the bothersome singular point at 0 was shuffled off to oblivion. Jaffé
effected this rearrangement with the variable change u = (x− x0)/x and then let

y(x) = eiωxx−
1
2B2−iηf(u) .

The differential equation for f in terms of the variable u is

u(1− u)2f,uu + (c1 + c2u+ c3u
2)f,u + (c4 + c5u)f = 0 , (38)

where

c1 = B2 +B1/x0

c2 = −2[c1 + 1 + i(η − ωx0)]
c3 = c1 + 2(1 + iη)

c5 = ( 1
2
B2 + iη)( 1

2
B2 + iη + 1 +B1/x0)

c4 = −c5 − 1
2
B2( 1

2
B2 − 1) + η(i− η) + iωx0c1 +B3 .

11



The function f(u) can then be expanded in a power series in u, f(u) =
∑∞

n=0 anu
n, and Jaffé’s solution to

the generalized spheroidal wave equation is

y1(x) = e+iωxx−
1
2B2−iη

∞∑
n=0

arn

(
x− x0
x

)n
. (39)

With the Laguerre polynomials defined in Appendix A the coefficients arn in the Hylleraas expansion
(37) and the coefficients arn in the Jaffé expansion (39) have the amusing property of being identical. They
obey the same three-term recurrence relation

αr0a
r
1 + βr0a

r
0 = 0

αrna
r
n+1 + βrna

r
n + γrna

r
n−1 = 0 n = 1, 2 . . . (40)

where
αrn = (n+ 1)(n+B2 +B1/x0)

βrn =

{
−2n2 − 2[B2 + i(η − ωx0) +B1/x0]n

−( 1
2
B2 + iη)(B2 +B1/x0) + iω(B1 +B2x0) +B3

}
γrn = (n− 1 + 1

2
B2 + iη)(n+ 1

2
B2 + iη +B1/x0) .

(41)

The normalization of the Laguerre polynomials is important. The convention here is that used by Slater,28

and by Gradshteyn and Ryzhik.29 Relevant recurrence and differential properties, as well alternate normal-
izations, will be found in Appendix A.

Convergence of the Hylleraas and Jaffé expansions may be analyzed by determining the behavior of the
expansion coefficients at large n and applying the ratio test to successive terms in the series. To this end
divide recurrence relation (40) by n2arn, retain terms to O(1/n), and expand

lim
n→∞

arn+1

arn
= 1 +

a√
n

+
b

n
+ . . . (42)

The resulting approximate recurrence relation can be written(
1 +

u

n

)(
1 +

a√
n

+
b

n

)
−
(

2 +
v

n

)
+
(

1 +
w

n

)(
1− a√

n
+
a2 − b
n

+
2ab− a/2− a3

n3/2

)
≈ 0 (43)

where u, v, and w are constants given by u = B2 +B1/x0 + 1, v = 2[B2 +B1/x0 + i(η − ωx0)], and
w = B2 +B1/x0 + 2iη − 1. Retaining terms toO(n−3/2) and solving for a and b we find a2 = v − u− w
and b = 1

4 + v/2− u, or
a2 = −2iωx0 , b = i(η − ωx0)− 3/4 . (44)

The large n behavior of the arn may then be deduced by writing (42) as

lim
n→∞

arn+1 − arn
arn

=
a√
n

+
b

n
, (45)

and integrating with respect to n. The result5 is

lim
n→∞

arn ≈ nbe2a
√
n = ni(η−ωx0)−3/4e±2

√
−2iωx0n . (46)

The two signs (±) in the exponent indicate the asymptotic behavior of the two independent solution
sequences to the recurrence relation. It is apparent that one solution sequence will be dominant and the
other minimal for all ωx0 that are not pure negative imaginary.
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The Laguerre polynomials Ln(z) are a dominant solution to the recurrence relation

(n+ 1)Lαn+1(z)− (2n+ α+ 1− z)Lαn(z) + (n+ α)Lαn−1(z) = 0 . (47)

Repeating the procedure that found lim arn+1/a
r
n, we find

lim
n→∞

Lαn+1(z)

Lαn(z)
= 1 +

√
− z
n

+
z + 1− α

2n

where z = −2iω(x− x0). The limiting form of the ratio of successive terms of the series (37) is

lim
n→∞

Γ(12B2 +B1/x0 + iη + n+ 1)

Γ(12B2 +B1/x0 + iη + n+ 2)

(n+ 1)!arn+1L
α
n+1(z)

n!arnL
α
n(z)

=

1 +

√
2iω(x− x0)±

√
−2iωx0√

n
+O(1/n) .

(48)

The (±) arises from the ratio arn+1/a
r
n, and is (−) only for sequences arn that are minimal. Hence the

only condition under which Hylleraas’ expansion (37) can converge is if both (i) 2iω(x − x0) is purely
negative real, and (ii) the sequence {arn : n = 0, 1, 2 . . .} is minimal. (We will not consider cases in which
2iω(x − x0) and −2iωx0 are both purely negative real. Analysis of that condition hinges on the O(1/n)
terms, and in light of the much stronger convergence properties of Jaffé’s expansion, is not terribly relevant.)
In the context of the quantum mechanics of hydrogen molecule ion condition (i) is automatically satisfied
for any negative real energy E = −ρ2/2a (where ρ = −iω in the usual notation), and the fulfillment
of condition (ii) becomes the quantization condition on ω. (The continued fraction equation (53) must be
satisfied for the recurrence coefficients given in (41)). Hence the Hylleraas expansion successfully represents
the eigenfunctions of the bound states of hydrogen molecule-like ions, but very little else.

Jaffé’s expansion, on the other hand, is absolutely convergent on [x0 ≤ x < ∞), and is uniformly
convergent there if

∑
arn is finite (usually only if the arn are minimal). Proof of absolute convergence is

trivial: choose an x from the half-plane in which |(x− x0)/x| < 1. Then

lim
n→∞

∣∣∣∣arn+1[(x− x0)/x]n+1

arn[(x− x0)/x]n

∣∣∣∣ =

∣∣∣∣x− x0x

∣∣∣∣ < 1 ,

and convergence at any finite x is assured.
The condition for uniform convergence is similarly demonstrated:

lim
n→∞

[
lim
x→∞

∣∣∣∣arn+1[(x− x0)/x]n+1

arn[(x− x0)/x]n

∣∣∣∣] = lim
n→∞

arn+1

arn
= 1±

√
−2iωx0√

n
− 1− i(η − ωx0)

n
.

Convergence is guaranteed if (i) the (−) sign is obtained, which is the case if the sequence {arn : n = 1, 2 . . .}
is minimal, or (ii) if Re(

√
2iωx0) = 0 and Im(η − ωx0) > 0. The first case again defines the quantization

condition for the hydrogen molecule-like ions, and has also been used to characterize the quasi-normal
modes of black holes — a problem for which 2iωx is complex and the Hylleraas expansion is useless.
The second case can arise in the consideration of hydrogen molecule-like ion wavefunctions for negative
noneigenenergies if one defines ρ by E = −ρ2/2a (i.e., ρ = −iω) as before, and expands the solution y(x)
as

y2(x) = e−iωxx−
1
2B2+iη

∞∑
n=0

brn

(
x− x0
x

)n
. (49)

The expansion coefficients brn are generated by a three-term recurrence relation

α̃0b
r
1 + β̃0b

r
0 = 0

α̃nb
r
n+1 + β̃nb

r
n + γ̃nb

r
n−1 = 0 n = 1, 2 . . . (50)
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where now the recurrence coefficients α̃n, β̃n, and γ̃n are given by

α̃n = (n+ 1)(n+B2 +B1/x0)

β̃n =

{
−2n2 − 2[B2 − i(η − ωx0) +B1/x0]n

−( 1
2
B2 − iη)(B2 +B1/x0)− iω(B1 +B2x0) +B3

}
γ̃n = (n− 1 + 1

2
B2 − iη)(n+ 1

2
B2 − iη +B1/x0) .

(51)

The α̃n, β̃n, and γ̃n of equation (51) are the complex conjugates of the αn, βn, and γn of equation (41) only
if the parameters B1, B2, B3, ω, x0, and η are purely real. When ω = iρ lies on the positive imaginary
axis the independent solutions sequences to recurrence relation (50) are neither minimal nor dominant, so
this expression is not well-suited to determine the exact hydrogen molecule-like ion eigenfunctions – but
it does generate the general negative energy solutions in a stable manner, and was useful in the numerical
verification of the integral relationships to be discussed forthwith (Sec. 4c).

B. The Radial Eigenvalue Problem

The eigensolutions of the generalized spheroidal wave equation (1) on the interval [0 ≤ x < ∞) are those
functions y1(x) or y2(x) of equations (39) and (49) for which

∑
arn or

∑
brn converge. The function y1(x)

then describes an eigenfunction that is regular at x = x0 and has purely e+i(ωx−η lnx) behavior as x → ∞,
and y2(x) describes an eigenfunction that is regular at x = x0 and has purely e−i(ωx−η lnx) behavior as
x → ∞. The sums over arn or brn will usually converge iff the arn or brn are minimal solutions to their
respective recurrence relations (40) and (50), and this will happen only for certain characteristic values of
the frequency ω. (The values of ω for which the arn are minimal will not be the same as the values of ω for
which the brn are minimal.) As in our previous discussion of the angular eigenvalue problem, the coefficients
arn will be minimal iff they satisfy the continued fraction equation

arn+1

arn
=
−γrn+1

βrn+1 −
αrn+1γ

r
n+2

βrn+2 −
αrn+2γ

r
n+3

βrn+3 − · · ·
(52)

which in turn will require that ω be a root of

0 = βr0 −
αr0γ

r
1

βr1 −
αr1γ

r
2

βr2 −
αr2γ

r
3

βr3 − · · ·
(53)

Here the αrn, βrn, and γrn are defined as functions of ω in equations (41). Analogous equations can be written
concerning the brn and the α̃n, β̃n, and γ̃n in the instances when eigensolutions of the type y2 are desired.

In most physical situations both the αθn, βθn, and γθn for the angular eigenvalue equation (36) and the
αrn, βrn, and γrn for the radial eigenvalue equation (53) are functions of both the angular separation constant
Alm and of the frequency ω. This will then require the simultaneous solution of equations (36) and (53),
which usually is not difficult numerically. Such solutions were demonstrated for the electronic spectra of
the hydrogen molecule-ion by Hylleraas,7 Jaffé,8 and Baber and Hassé.5 Analogous solutions for the quasi-
normal modes of black holes are given by Leaver.11 With use of eigensolutions of type y2 a similar approach
can be taken to the “algebraically special” black hole perturbations discussed by Chandrasekhar.30

C. Second Solutions by way of an Integral Transform

If we express the solutions to equation (1) near the singular point x = x0 as

lim
x→x0

y(x) = (x− x0)k2 (54)
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then the exponent k2 takes the values 0 and 1 − B2 − B1/x0. If B2 + B1/x0 is not an integer, a second
solution to equation (1) may be found through the substitution y(x) = (x − x0)

1−B2−B1/x0g(x). The
differential equation for g will be

x(x− x0)g,xx + [B1 + (2−B2 − 2B1/x0)x]g,x +

{ω2x(x− x0)− [2ηω + (1−B2 −B1/x0)B1/x0](x− x0) +B3}g = 0
(55)

which is of the same form as equation (1), and a regular solution for f may be found by the method of
Jaffé. If B2 + B1/x0 is an integer, then a second solution to equation (38) may be found by the method of
Frobenius. The expansion coefficients for the resulting second solution will obey an inhomogeneous three-
term recurrence relation, and contain a free parameter that may be empirically adjusted to vary the amount
of the first solution that appears in the second. This property is interesting, but the procedure is tedious and
will not be dealt with here (see Rabenstein31 for a discussion of Frobenius’ method).

A more entertaining approach to the second solutions is open to those who remain curious about the
equality of the Hylleraas and Jaffé expansion coefficients. Wilson27 speculated that “the solution of (a
generalized spheroidal wave equation) is probably expressible as a homogeneous integral equation.” One
such integral had already been given by Ince32 for the particular parameters choice η = ±i(B1+B2)/2 , and
although the contour used by Ince was [−1, 1], his expressions can be made valid on [1,∞). Another integral
relation for a different, though still specific, choice η = ±i(B2/2 − 1) is arrived at through consideration
of the equality of the Hylleraas and Jaffé expansion coefficients, and leads directly to a representation for a
second solution to the differential equation as a series of irregular confluent hypergeometric functions. The
new representation is valid for arbitrary η. The argument goes as follows:

Start with equation (1)

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0

and make the substitution y = eiωxf(x). The differential equation for f(x) is

x(x− x0)f,xx + [B1 +B2x+ 2iωx(x− x0)]f,x + [(B2 + 2iη)iωx+ 2ηωx0 + iωB1 +B3]f = 0 (56)

and f admits to the expansions

f(x) =

∞∑
n=0

n!arn
Γ( 1

2
B2 + iη +B1/x0 + 1 + n)

LB2+B1/x0−1
n (−2iω(x− x0)) (57)

(Hylleraas) and

f̄(x) = x−
1
2B2−iη

∞∑
n=0

arn

(
x− x0
x

)n
(58)

(Jaffé). The coefficients arn are the same for each expansion and f̄(x) is proportional to f(x) when both
are eigenfunctions such that

∑
arn converges. Specializing to the case iη = B2/2 − 1, these expressions

respectively become

f(x) =

∞∑
n=0

n!arn
Γ(B2 +B1/x0 + n)

LB2+B1/x0−1
n (−2iω(x− x0)) (59)

and

f̄(x) = x1−B2

∞∑
n=0

arn

(
x− x0
x

)n
. (60)
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Perusal of standard integral tables33 reveals∫ ∞
0

e−sttαLαn(t)dt =
Γ(α+ n+ 1)

n!
s−α−1

(
s− 1

s

)n
, (61)

so that with the associations α = B2 +B1/x0 − 1, t = −2iω(x− x0), and s = x/x0, we conclude

f̄(x) = x1+B1/x0

∫
c
e2iωx(t−x0)/x0(t− x0)B2+B1/x0−1f(t)dt (62)

for some contour c that includes x0 and∞. Multiplicative constants have been omitted from the integration.
This result is verified via the theory of integral transforms in Appendix B. The important result of that
derivation is the procurement of the bilinear concomitant

P (x, t) =

{
t(t− x0)[f(t) ddtK(x, t)−K(x, t) ddtf(t)] +

(2iωt2 + (B2 + 2B1/x0 − 2iωx0)t−B1 − x0)K(x, t)f(t)

}
(63)

where the kernel K(x, t) is given by

K(x, t) = e2iωx(t−x0)/x0(t− x0)−s2

and
s2 = 1−B2 −B1/x0 .

The exponent s2 takes the second of the allowed values of k2 of equation (54). The bilinear concomitant
must vanish at each end of the integration contour.

On such an integration contour equation (62) is an integral relation among solutions f(x) and f̄(x)
to equation (56). This does not necessarily mean that f and f̄ are the same solution to the differential
equation, however. Equation (62) is an integral equation only for functions f(x) that have the decreasing
exponential behavior at x = ∞. If such an f(x) should also happen to be regular at x = x0, then f(x) is
an eigenfunction of equation (56) and one endpoint of the contour c can be taken directly to t = x0. In this
case f(x) and f̄(x) are proportional and equation (62) becomes an integral equation for eigenfunctions. It
may be noted that the quasi-normal modes of black holes can be described by this kind of eigenfunction,
although the requirement iη = B2/2 − 1 restricts the applicability of (62) to consideration only of scalar
fields (s = 0 in equations (11) and (19)).

The integration contour c is determined by the requirement that the bilinear concomitant P (x, t) vanish
at its endpoints. If f(x) → (x − x0)si as x → x0, then the allowed values for the exponent si are s1 = 0
and s2 = 1−B2 −B1/x0. We consider two general cases:

i. f(x)
x→x0−→ (constant) and either Re(s2) < 0 or s2 = 0. In this case P (x, t) vanishes at t = x0

and the contour c may be taken to be that shown in Figure 1a. The approach angle θ is chosen such
that Re(2iωxt/x0) < 0. The kernel K(x, t) is then an exponentially decreasing function of x and
equation (62) expresses the solution f̄(x) regular as x → ∞ in terms of the solution f(t) that is
regular as t→ x0. If f(t) is also regular as t→∞, then ω is an eigenfrequency, f̄ is proportional to
f , and equation (62) becomes an integral equation for the eigenfunctions. We can see how this works
by substituting the Jaffé expansion for f(t) into equation (62):

f̄(x) = x1+B1/x0

∫ ∞
x0

e2iωx(t−x0)/x0(t− x0)−s2t1−B2

[ ∞∑
n=0

arn

(
t− x0
t

)n]
dt (64)

The behavior of f̄(x) near x = x0 is determined by the large t behavior of the integrand. If ω is an
eigenfrequency the series

∑
arn[(t − x0)/t]n is uniformly convergent as t → ∞ and the integral for

large t, x→ x0, looks like

f̄(x)
x→x0−→ x1+B1/x0

∫ ∞
e2iωx(t−x0)/x0tB1/x0dt
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(since s2 = 1−B2 −B1/x0) and is always finite with the aforementioned choice of approach angle
θ. Hence f̄(x) is finite as x→ x0. If ω is not an eigenfrequency then∑
arn(t− x0)/t)n

t→∞−→ tB2−2e−2iωt, the integral looks like

f̄(x)
x→x0−→ x1+B1/x0

∫ ∞
e2iω(x−x0)t/x0t−s2−1dt

and
lim
x→x0

f̄(x) ∼ (x− x0)s2

as required for the independent second solution. Note that while in physical contexts the variable x
is a spatial coordinate and is positive and real, the flexibility afforded in the choice of the approach
angle allows equation (62) to describe functions f for which Im(ω) ≤ 0.

17



Figure 1: Contours for use with integral relation (62).
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ii. f(x)
x→x0−→ (x − x0)s2 or Re(s2) > 0 . Note that the restriction Re(s2) > 0 is artificial, since one

can always obtain Re(s2) < 0 for a function g(x) by substituting f(x) = (x− x0)s2g(x) in equation
(56). Either way P (x, t) is not zero at t = x0 and the contour c is chosen to be that illustrated in
Figure 1b. This contour has the appearance of being all-purpose and do-everything, but we shall see
that if one actually had the information necessary to use it, one would also have the information to
convert the problem to that considered in case(1) above, and would end up using the contour of Figure
1a.

The branch cut arises from the factor (t − x0)
−s2 in K(x, t) if s2 is not an integer, and from the

logrithmic term inherent in f if s2 is an integer. The function f̄(x) is regular as x→∞ regardless of
the behavior of f(t), so that given any solution f(x) to equation (56), equation (62) will always give
the solution f̄(x) that is regular as x → ∞ for the chosen contour c. On this contour equation (62)
is an integral equation for all functions f that are regular at t = ∞, but is of limited computational
utility as an integral equation for non-eigenfunctions because a solution that is irregular at x = x0
and regular at x =∞ must be a weighted sum of two component functions, one regular and the other
irregular at x = x0, and both irregular at x =∞. Detailed knowledge of the weighting factors in the
sum is necessary, since the product of only one of the component functions and the kernel K(x, t)
will contribute to the integral. The product of the other component function and the kernel will have
the same value on each side of the branch cut, and will give no contribution.

To see how this works, first consider s2 not an integer. Then f(t) can be written

f(t) = t1−B2

[ ∞∑
n=0

arn

(
t− x0
t

)n
+ (t− x0)s2

∞∑
n=0

brn

(
t− x0
t

)n]
(65)

which is just the sum of two independent Jaffé solutions. Only the product ofK(x, t) and the function
corresponding to the first sum will contribute to the integral, and if that function were known (i.e., if
we knew the value of ar0), we could use case (1) above. Similarly, if s2 is an integer, then any solution
irregular at x0 is expressible as

f(t) = t1−B2

[
log

(
t− x0
t

) ∞∑
n=0

arn

(
t− x0
t

)n
+ (t− x0)s2

∞∑
n=0

brn

(
t− x0
t

)n]
(66)

which is the form of the second Jaffé solution as obtained by the method of Frobenius. Here again
only the product of K(x, t) and the term containing the first sum will contribute to the integral. If the
product of the logarithm and the first solution were known we again would revert to case (1) since the
difference of the logarithm across the branch cut is just the constant 2πi, and the integrand becomes
effectively integrable at x0. Either way we are required to know the function that is regular at x = x0
in order to evaluate the difference across the branch cut, and if that solution is known (such as by
Jaffé’s method), then the problem reduces to the one considered in case (1).

As noted previously, Hylleraas’ expansion converges only when ω is a purely imaginary eigenfrequency.
We have shown how in that case the relation of the Hylleraas expansion coefficients to the Jaffé coefficients
leads to an integral equation for eigenfunctions (at least when iη = B2/2 − 1) and how, when ω is not an
eigenfrequency, the same integral will transform the first solution that is regular at x = x0 into a second
independent solution that is regular at x = ∞. Jaffé’s method always gives a convergent expansion for the
regular first solution, and it is interesting to examine the result of transforming Jaffé’s expansion term by
term.

We interchange the summation and the integration to explicitly evaluate the the right hand side of

19



equation (64):

f̄(x) = x1+B1/x0

∞∑
n=0

arn

{∫ ∞
x0

e2iωx(t−x0)/x0t1−B2−n(t− x0)B2+B1/x0+n−1dt

}
= x1+B1/x0

∞∑
n=0

arnΓ(B2 +B1/x0 + n)U(B2 +B1/x0 + n, 2 +B1/x0,−2iωx)

=
∞∑
n=0

arnΓ(B2 +B1/x0 + n)U(B2 − 1 + n,−B1/x0,−2iωx) .

(67)

Here U(a, b, z) is the irregular confluent hypergeometric function defined by the integral representation

Γ(a)U(a, b, z) =

∫ ∞
0

e−ztta−1(t+ 1)b−a−1dt (68)

and obeys the Kummer relation28

U(a, b, z) = z1−bU(1 + a− b, 2− b, z) . (69)

The normalization in f̄(x) is not important here, and the constant multiplying factors were dropped during
the integration.

The last of equations (67) may also be arrived at by the usual eigenfunction expansion method of solving
ordinary differential equations (see Appendix C), which produces a result that holds for arbitrary η:

f̄(x) =

∞∑
n=0

arnΓ(B2 +B1/x0 + n)U(B2/2 + iη + n,−B1/x0,−2iωx) . (70)

The expansion coefficients arn are the same as Jaffé’s (equation (41)), and since y(x) = eiωxf̄(x), we
now have a second independent solution to the generalized spheroidal wave equation (1). Expansion (70)
is absolutely convergent on any interval bounded away from x0, is uniformly convergent as x → ∞,
diverges at x = x0 when ω is not an eigenfrequency, and is uniformly convergent as x → x0 when ω
is an eigenfrequency.

The derivations for the second solutions may again be repeated with the substitutions y(x) = e−iωxf(x).
We then have our first four convergent representations for solutions to the generalized spheroidal wave
equation:

y1(x) = e+iωxx−B2/2−iη
∞∑
n=0

arn

(
x− x0
x

)n
(71)

y2(x) = e−iωxx−B2/2+iη
∞∑
n=0

brn

(
x− x0
x

)n
(72)

y3(x) = e+iωx
∞∑
n=0

arn(B2 +B1/x0)nU( 1
2
B2 + iη + n,−B1/x0,−2iωx) (73)

y4(x) = e−iωx
∞∑
n=0

brn(B2 +B1/x0)nU( 1
2
B2 − iη + n,−B1/x0,+2iωx) . (74)

Here y3 and y4 have been normalized by a factor 1/Γ(B2 + B1/x0) and (z)n ≡ Γ(z + n)/Γ(z) is
Pochhammer’s symbol. The arn are defined by equations (40) and (41), and the brn by equations (50) and (51).
The solutions y1(x) and y2(x) are both regular as x → x0, and are proportional by the factor e2iωx0ar0/b

r
0.
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However, convergence properties and growth behavior of individual terms in the series will differ markedly
if Im(ω) is not zero. Solutions y3(x) and y4(x) are independent and are both irregular as x → x0 when
ω is not an eigenfrequency. When ω is an eigenfrequency then one or the other of y3(x) and y4(x) will be
regular at x = x0 (see Appendix C). Solutions y3(x) and y4(x) should have the limiting forms

lim
|x|→∞

y3(x) = ar0x
− 1

2B2e+i(ωx−η lnx) (75)

and
lim
|x|→∞

y4(x) = br0x
− 1

2B2e−i(ωx−η lnx) (76)

(see Slater,28 equation 13.5.2). Although I have made extensive computational use of equations (71) and (72)
— they are the basis of my standard algorithm for generating regular solutions to the generalized spheroidal
wave equation near x = x0 — I have not yet (as of July, 1985) been able to verify expansions (73) and (74)
and their asymptotic forms (75) and (76) with a computer. But they do look as if they might be useful.

D. Computational Limitations of the Jaffé Solutions

As might be expected, the absolute convergence property of Jaffé’s expansion makes (39) an extremely
useful expression for the numerical evaluation of the generalized spheroidal wavefunction that is regular at
x = x0, and for those eigenfunctions for which convergence is uniform it provides the algorithm of choice.
However, for arbitrary ω the arn are dominant, and it behooves one to graph the behavior of the sequence
{arn[(x − x0)/x]n : n = 0, 1, 2 . . .} as a function of n before concluding one really can sum its terms.
Assume that the an are dominant. If the sequence is normalized such that ar0 = 1, the sum

∞∑
n=0

arn

(
x− x0
x

)n
will typically have magnitude of O(1 + |ω−1|). For a rough estimate ignore the nb term in equation (46).
Then for large x

lim
n→∞

∣∣∣∣arn(x− x0x

)n∣∣∣∣ ≈ ∣∣∣∣x− x0x

∣∣∣∣n ∣∣∣e2ρ√n∣∣∣ , (77)

(where ρ =
√
−2iωx0), and |arn[(x− x0)/x]n| has a maximum at nmax ≈ (ρx/x0)

2. To give an idea of the
numerical problems lurking in wait of the unwary, consider the not unreasonable case of ρ = 1, x/x0 = 5.
Then nmax ≈ 25 and

arnmax

(
x− x0
x

)nmax
≈ 80

which is only two orders of magnitude greater than the sum of all the terms. But if x/x0 = 20

arnmax

(
x− x0
x

)nmax
≈ 3× 108

and rounding considerations dictate the use of extended precision if the series (39) is to be summed with any
accuracy.
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V. THE STRATTON SOLUTIONS TO THE ORDINARY SPHEROIDAL WAVE EQUATION, AND
A PRELIMINARY GENERALIZATION

The separated parts of the one-particle Schrödinger equation simplify in free space where there is no
potential andN1 = N2 = 0. Equations (2) and (3) are then the same as those resulting from the separation of
the Helmholtz equation in spheroidal coordinates, and Stratton’s34 representations of the ordinary spheroidal
wave functions are a natural starting point for investigation of solutions to more general forms of the
equation. I was originally attracted to Morse’s spherical Bessel function expansion for two reasons. First,
the asymptotic magnitude and phase of any convergent series of spherical Hankel functions

∑
anh

(1)
n (z)

or
∑
anh

(2)
n (z) can readily be calculated. Second, numerical algorithms to generate Bessel functions for

a variety of orders and a wide range of magnitudes of the argument are reasonably well understood. The
first property will be dealt with in full generality in Sec. VI. The second will be touched upon in the
Summary. The present section reviews the Stratton representation for ordinary spheroidal wavefunctions,
and generalizes it to the case of the equations that arise for an electron in the field of a finite dipole:
N1 = −N2 6= 0. A detailed discussion of convergence properties is given which will serve as a model
for the convergence proofs of the general Coulomb wavefunction expansions presented in section VI, and
which (I hope) will dispel misconceptions concerning the convergence of Stratton’s solutions to the ordinary
spheroidal wave equation.

A. The Ordinary Spheroidal Wave Equation

The ordinary spheroidal wave equation results from the separation of the Helmholtz and free-particle
Schrödinger equations in spheroidal coordinates. It is a special case of equations (2) and (3) for which
N1 and N2 are both zero, and for which equations (2) and (3) become the same. The angular equation (3)
simplifies to

d

dµ

[
(1− µ2)dΦ

dµ

]
+

[
−ω2µ2 +Alm −

m2

1− µ2

]
Φ = 0 , (78)

and the solution function Φ(µ) can be expanded in a series of Gegenbauer polynomials35:

Φ(µ) = (1− µ2)m/2
∞∑

n=0,1

′
dnT

m
n (µ) . (79)

The “ ′ ” indicates the sum is to be taken over even values of n if l is even and over odd values of n if l is
odd. The Gegenbaur polynomials are generated36 by

∞∑
n=0

hnTmn (z) =
2mΓ(m+ 1

2
)

√
π(1 + h2 − 2hz)m+ 1

2

(|h| < 1) ,

and are related to the regular Gauss hypergeometric series 2F1 by

Tmn (z) =
(n+ 2m)!

2mn!m!
2F1

(
n+ 2m+ 1,−n;m+ 1;

1− z
2

)
.

The expansion coefficients {dn : n = 0, 2, 4 . . . or n = 1, 3, 5 . . .} obey the recurrence relation37

α0d2 + β0d0 = 0

α1d3 + β1d1 = 0

αndn+2 + βndn + γndn−2 = 0 n = 2, 3, 4 . . .
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where

αn = ω2 (n+ 2m+ 1)(n+ 2m+ 2)

(2n+ 2m+ 3)(2n+ 2m+ 5)

βn = ω2 2[(n+m)(n+m+ 1)−m2]− 1

(2n+ 2m+ 3)(2n+ 2m− 1)
+ (n+m)(n+m+ 1)−Alm

γn = ω2 n(n− 1)

(2n+ 2m− 1)(2n+ 2m− 3)

(80)

In order for the series to converge at µ = ±1, the separation constant Alm must be chosen such that the dn
are minimal and the continued fraction equation

β0 =
α0γ2
β2 −

α2γ4
β4 −

α4γ6
β6 − · · ·

(81)

is satisfied.
The simplified spheroidal radial equation (2) becomes

d

dλ

[
(λ2 − 1)

dΨ

dλ

]
+

[
ω2λ2 −Alm −

m2

λ2 − 1

]
Ψ = 0 (82)

which is the same as (78) but in the coordinate λ instead of µ. Next, if Φ(µ) is a solution to (78), then

Ψ(λ) = (λ2 − 1)m/2
∫ +1

−1
eiωλµ(1− µ2)m/2Φ(µ)dµ (83)

is a solution also, but in the variable λ (Ince, page 201). Integrating the series (79) for Φ term by term and
using the relation ∫ +1

−1
eiωzt(1− t2)mTmn (t)dt = in

2(n+ 2m)!

n!(ωz)m
jn+m(ωz)

(Morse and Feshbach, page 643 — the jn+m are spherical Bessel functions), we obtain the final result

Ψ(λ) =

(
λ2 − 1

λ2

)m
2
∞∑

n=0,1

′
indn

(n+ 2m)!

n!
jn+m(ωλ) (84)

(see Morse and Feshbach, Eq. 11.3.91. We have left off the normalization factors). The dn are the same
as in the expansion (79) for Φ and satisfy recurrence relation (80). A second solution to equation (82) is
obtained by substituting the irregular spherical Bessel functions yn(ωλ) in place of the jn(ωλ) in expression
(84).

The convergence properties of both solutions will be discussed in Sec. Vc. The important point for now
is that the series (84) converges only if the dn form a minimal solution to the recurrence relation (80), which
can happen only for specific values of the parameter Alm.

B. Preliminary Generalization: Schrodinger’s Equation for an Electron in the Field of a Finite Dipole

The simplest generalization of the ordinary spheroidal wave equation is the removal of the freedom to choose
Alm. The physical context wherein this complexity arises is the separation of the Schrödinger equation for
an electron in the dipole field of two fixed but oppositely charged nuclei. In this consideration N2 = −N1

in equations (2) and(3), so that equation (2) still simplifies to equation (82). However, equation (3) becomes
more complicated, and while it is still readily solvable by the power series method described in Sec. III,
the resulting separation constant Alm is now dependent on the dipole moment 2aN1 in addition to ω. If we
again try to expand the solution to equation (82) as

Ψ(λ) =

(
λ2 − 1

λ2

)m
2
∞∑

n=0,1

′
indn

(n+ 2m)!

n!
jn+m(ωλ) (85)
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we find that although the dn still satisfy the recurrence relation (80), they will in general form a dominant
solution sequence since Alm can no longer have a value that will force them to be minimal. The series (85)
will then diverge.

The convergence problem can be solved if we can find some other parameter in the recurrence relation
that may be adjusted so that the expansion coefficients dn form a minimal solution sequence. There are no
free parameters left in the differential equation (82) itself, so a new parameter must be introduced in the
representation of the solution. Consideration of the physical problem of the electron in the dipole field leads
to the suspicion that the natural choice for such a parameter will have something to do with the asymptotic
phase of the solution function Ψ(λ), since the asymptotic phase of the Schrödinger wave function will be
shifted as the dipole moment 2aN1 of the source potential increases away from zero. Specifically, a solution
to equation (82) for arbitrary values ofAlm and ω may be expressed as a generalized Neumann expansion38:

Ψ1(λ) =

(
λ2 − 1

λ2

)m
2

∞∑
L=−∞

′
aLjL+ν(ωλ) . (86)

The jL+ν are again spherical Bessel functions. A second solution may be obtained by substituting the
irregular spherical Bessel functions yL+ν for the jL+ν :

Ψ2(λ) =

(
λ2 − 1

λ2

)m
2

∞∑
L=−∞

′
aLyL+ν(ωλ) . (87)

The phase (or order) parameter ν in expansions (86) and (87) is free to be adjusted to make the aL minimal,
and thus to obtain convergence of the series. The recurrence relation obeyed by the aL is

αLaL+2 + βLaL + γLaL−2 = 0 , (88)

where

αL = −ω2 (L + ν −m+ 1)(L + ν −m+ 2)

(2L + 2ν + 3)(2L + 2ν + 5)

βL = +ω2

[
2[(L + ν)(L + ν + 1)−m2]− 1

(2L + 2ν − 1)(2L + 2ν + 3)

]
+ (L + ν)(L + ν + 1)−Alm

γL = −ω2 (L + ν +m)(L + ν +m− 1)

(2L + 2ν − 1)(2L + 2ν − 3)
.

If ν should equal m, then this recurrence relation is exactly the same as the recurrence relation (80) obeyed
by the dn if we make the substitution aL = iL[(L+2m)!/L!]dL. In this case the series (86) must be started at
L = 0 or L = 1 instead of L = −∞, and the solution representation (86) reduces to the representation (84)
for the ordinary spheroidal wave functions. Convergence properties of the two representations are therefore
the same.

In the more general case when N1 = −N2 6= 0, the values of the parameter ν for which the series
(86) and (87) converge will not be integers, and the sequence {aL : L = . . .− 2,−1, 0,+1,+2 . . .} must be
made minimal both as L→∞ and as L→ −∞ . The ratios of successive aL must then satisfy both

aL
aL−2

=
−γL
βL −

αLγL+2

βL+2 −
αL+2γL+4

βL+4 − · · ·
(89)

for L = +2,+4,+6 . . . and
aL
aL+2

=
−αL
βL −

αL−2γL
βL−2 −

αL−4γL−2
βL−4 − · · ·

(90)
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for L = −2,−4,−6 . . . The recursion equation at L = 0 requires

β0 = −α0
a2
a0
− γ0

a−2
a0

. (91)

Substituting the right hand sides of equations (89) and (90) into (91), we obtain an implicit characteristic
equation for ν that must be satisfied if the series (86) is to converge38:

β0 =


α−2γ0
β−2 −

α−4γ−2
β−4 −

α−6γ−4
β−6 − · · ·

+
α0γ2
β2 −

α2γ4
β4 −

α4γ6
β6 − · · ·

 (92)

The αL, βL, and γL are given by equations (88).
Existence and Uniqueness: I do not have a formal proof that equation (92) actually has solutions in the

parameter ν. However, solutions can be found numerically, so they must exist. Expansions (86) and (87)
must reduce to the solutions (84) in the limit as the dipole moment 2aN1 goes to zero, so ν = m must be
a solution to (92) at that limit. Knowing the approximate location of a root to a nonlinear equation is the
first step towards finding it, and it is not difficult to start at a given ω with ν = m, N1 = −N2 = 0, Alm
an eigenvalue of the ordinary prolate spheroidal wave equation, and then track the values of ν that solve
equation (92) as the dipole moment is gradually increased.

The solutions ν are not unique, but rather are periodic with period 1: if ν is a solution to equation (92),
then so is ν ± n, where n is any integer. The correct choice of ν depends on how the coefficients aL are
generated. The aL are to be minimal as L → ±∞, and if the aL are generated by forward recursion from
L = −∞ upward to L = 0 and by backward recursion from L = +∞ downward to L = 0, then the largest
aL will be amax = a0. As ω → 0 this amax = a0 becomes the only coefficient that contributes to the series,
and with this choice of amax = a0 the correct limiting value of ν as the dipole moment 2aN1 reduces to
zero is ν = l + m. Solutions ν that do not reduce to l + m as 2aN1 → 0 are spurious: they will enable
expansions (86) and (87) to converge, but the resulting expressions will not solve the differential equation.
That ν = l+m is the correct limit as ω → 0 or as 2aN1 → 0 will be demonstrated at the end of the section.
This value may appear inconsistent with expansion (84), but it is not. For |ω| � 1 the dn of (84) will have
a maximum at dmax = dl or dl−1, and for 2aN1 = 0 and ω 6= 0 the aL of (86) will become zero only for
L < −l or − l + 1. The two expansions are the same: it is only the indexing that is different.

C. Convergence Properties

To establish the convergence of the series (86) and (87) it is necessary to examine the ratios

lim
L→±∞

aLfL+ν(ωλ)

aL−2fL+ν−2(ωλ)

where fL+ν is either jL+ν or yL+ν . We assume that ν has been chosen to satisfy equation (92), so that the
aL are minimal as L→ ±∞ and have the limiting behavior

lim
L→+∞

aL
aL−2

=
ω2

4L2

[
1− 2ν + 1

L
+O(1/L2)

]
and

lim
L→−∞

aL
aL+2

=
ω2

4L2

[
1− 2ν + 1

L
+O(1/L2)

]
. (93)
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The jL+ν and the yL+ν are both solutions to the recurrence relation

1

2L + 2ν + 3
fL+ν+2

+
1

2L + 2ν − 1
fL+ν−2

+

[
4L + 4ν + 2

(2L + 2ν + 3)(2L + 2ν − 1)
− 2L + 2ν + 1

ω2λ2

]
fL+ν = 0 ,

(94)

the jL+ν being the particular solution sequence that is minimal as L → +∞. In general the jL+ν and the
yL+ν will both be dominant as L → −∞ (the exception being the inconsequential case when ν is an odd
multiple of 1/2), and we consider the following three cases:

1. fL+ν(ωλ) = jL+ν(ωλ) and L → +∞. From equation (94) the ratio jL+ν/jL+ν−2 has the limiting
forms:

lim
L→∞

jL+ν(ωλ)

jL+ν−2(ωλ)
=


ω2λ2

4L2

[
1− 2ν

L
+O(1/L2)

]
(L� |ωλ|)

−1 (L� |ωλ|)

In either case

lim
L→∞

∣∣∣∣ aLjL+ν(ωλ)

aL−2jL+ν−2(ωλ)

∣∣∣∣ < ∣∣∣∣ ω2

4L2

∣∣∣∣ , (95)

and this part of the series is absolutely convergent for all λ. If ν is an integer the negative L part of the
series (86) truncates, and (95) describes the convergence of the regular solution (84) to the ordinary
spheroidal wave equation.

2. fL+ν(ωλ) = yL+ν(ωλ) and L→ +∞. Again from equation (94) we find

lim
L→∞

yL+ν(ωλ)

yL+ν−2(ωλ)
=


4L2

ω2λ2

[
1 +

2ν

L
+O(1/L2)

]
(L� |ωλ|)

−1 (L� |ωλ|)

Hence

lim
L→∞

aLyL+ν(ωλ)

aL−2yL+ν−2(ωλ)
=


1

λ2

[
1− 1

L
+O(1/L2)

]
(L� |ωλ|)

− ω2

4L2
(L� |ωλ|)

and the series (87) converges rapidly for large λ and mediocre ω, but diverges when |λ| = 1.
Explicitly:

For every λ such that |λ| > 1 and for every ε > 0 there exits an N(ω, λ, ε) such that

∞∑
L=N

′
aLyL+ν(ωλ) < ε .

For each ε > 0, N will increase without bound as λ→ 1.

Contrary assertions39 notwithstanding,
∑′ aLyL+λ(ωλ) is absolutely convergent for all |λ| > 1, and

is in no sense asymptotic: N does not go to zero as λ → ∞. This convergence was demonstrated
numerically by Sinha and MacPhie,40 but to my knowledge the present analysis constitutes the
first rigorous proof. Jen and Hu41 have recently derived accurate approximations for the ordinary
spheroidal wave functions (both regular and irregular) that are rapidly convergent for large values of
ω, where the convergence of Stratton’s expansion is rather slow.
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3. fL+ν(ωλ) = jL+ν(ωλ) or fL+ν(ωλ) = yL+ν(ωλ) and L → −∞. This case is similar to the one just
discussed. Equation (94) once more yields

lim
L→−∞

fL+ν(ωλ)

fL+ν+2(ωλ)
=


4L2

ω2λ2

[
1 +

2ν + 4

L
+O(1/L2)

]
(|L| � |ωλ|)

−1 (|L| � |ωλ|)

which together with equation (93) gives

lim
L→−∞

aLfL+ν(ωλ)

aL+2fL+ν+2(ωλ)
=


1

λ2

[
1 +

3

L
+O(1/L2)

]
(|L| � |ωλ|)

− ω2

4L2
(|L| � |ωλ|)

.

Therefore the negative L part of either series (86) or (87) behaves like the positive L part of the series
(87) discussed previously, and series (86) and (87) are two independent and convergent irregular
solutions to our preliminary generalization of the ordinary spheroidal wave equation.

D. Solutions as ω → 0

1. N1 = −N2 = 0. When N1 = −N2 = 0 and ω is very small, equation (78) reduces to

d

dµ

[
(1− µ2)dΦ

dµ

]
+

[
Alm −

m2

1− µ2

]
Φ = 0 (96)

and with the substitution Φ(µ) = (1− µ2)m/2g(µ) the differential equation for g becomes

(1− µ2)g,µµ − 2(m+ 1)µg,µ − [m(m+ 1)−Alm] g = 0 . (97)

Hence
lim
ω→0

Φ(µ) = (1− µ2)m/2Tml (µ) .

and
lim
ω→0

Alm = (l +m)(l +m+ 1) .

This limiting value for Alm may also be obtained by setting ω = 0 and B2 = 2m + 2 in equation
(27), then finding the B3 that truncates the series (25) by making βθl = 0. Equation (83) then gives

lim
ω→0

Ψ(λ) =

(
λ2 − 1

λ2

)m
2

jl+m(ωλ)

and we must have ν → l +m as ω → 0 when N1 and N2 are zero if we are to keep a0 the maximum
term in series (86).

2. N1 = −N2 6= 0. By equations (89) and (90) we see that if we fix the largest expansion coefficient to
be amax = a0 = 1 in (86), then all the other aL must become zero as ω → 0 and the series will reduce
to the single term

lim
ω→0

Ψ1(λ) =

(
λ2 − 1

λ2

)m
2

a0jν0(ωλ) . (98)

This single term must also suffice as ωλ → ∞ (|ω| still� 1), and ν0 may be determined by looking
at this limit. Asymptotic solutions to equation (82) are

lim
λ→∞

Ψ1(λ) =

(
λ+ 1

λ− 1

) 1
2

jνa(ω(λ+ 1)) [1 +O(λ−3)] (99)
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and

lim
λ→∞

Ψ2(λ) =

(
λ+ 1

λ− 1

) 1
2

yνa(ω(λ+ 1)) [1 +O(λ−3)] (100)

where νa is a function of ω and takes the value (−1 +
√

1 + 4Alm)/2 when ω = 0 (see equations
(6) and (22) with zjν(z) = Fν(0, z)). The ω → 0 limit ν0 must equal this νa, which is consistent
with our previous determination that ν0 should equal l +m in the special case when N1 = −N2 = 0
and Alm = (l + m)(l + m + 1). That ν0 must equal νa may be recognized by considering λ large
enough that [(λ + 1)/(λ − 1)]1/2 ≈ [1 − λ−2], and ω small enough that ωλ � 1. The asymptotic
solutions (99) and (100) are valid in this region, but can represent the regular solution (98) only if the
orders νa and ν0 are the same. This is because jν(x) ∝ xν for small x. We should not be surprised to
find that ν0 will become complex when the dipole moment 2aN1 is greater than the critical value that
makes Alm < −1/4. Only those values of ν that are solutions to equation (92) and are contiguous
with νa as ω → 0 can be used to generate a sequence aL that allow expansions (86) and (87) to give
true solutions to the differential equation (82). In other words, if one wants to find a ν with which to
generate solutions to the differential equation (82) via expansions (86) and (87) for some nonzero (and
perhaps even complex) ω, one should first solve equation (91) for an ω very near zero using the νa
given at equation (23) as a starting point, then move ω toward the desired value in small increments,
re-solving (91) at each step to make certain the final value of ν obtained is on the correct branch.
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VI. SOLUTIONS BY EXPANSION IN SERIES OF COULOMB WAVEFUNCTIONS

Heartened by success with the preliminary generalization discussed in the previous section, one is imme-
diately tempted to try an expansion of the same sort as (86) and (87) for the general case of equation
(2) when 2a(N1 + N2) 6= 0. In terms of the problem of the two-center Schrödinger equation, this full
generalization implies a net Coulomb charge on the nuclei, hence the expansion must be in terms of Coulomb
wavefunctions rather than spherical Bessel functions. This is not a great conceptual complication, since
the Coulomb wavefunction FL(η, ρ) and the spherical Bessel function jL(ρ) are related when η = 0 by
FL(0, ρ) = ρjL(ρ). Unfortunately, if the expansion

Ψ(λ) =
1

λ

(
λ2 − 1

λ2

)m
2

∞∑
L=−∞

aLFL+ν(η, ωλ)

(with η = −a(N1 +N2)/ω) is substituted into the differential equation (2), the resulting recurrence relation
amongst the aL will have five terms instead of three, being of the form

−ω
2

4
αLaL+2 −

ω2

L2
ηmα′LaL+1 + L

2βLaL +
ω2

L2
ηmγ′LaL−1 −

ω2

4
γLaL−2 = 0

where the αL, α′L, βL, γ′L, and γL are functions of L, ν, and the parameters of the differential equation
and are normalized such that they each approach 1 as L → ∞. Exact expressions for these recurrence
coefficients are nearly as ghastly to derive as they are to contemplate once written down, and as I know of
no reasonable computational method for dealing with five-term recurrence relations, I will spare the reader
the agony of their further consideration and turn instead to the presentation of a more elegant representation
for the generalized spheroidal wavefunctions.

A. The Coulomb Wavefunction Expansion

Equation (1) was

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0 .

With the substitutions y(x) = x−B2/2h(x) and z = ωx the differential equation becomes

z(z − ωx0)[h,zz + (1− 2η/z)h] + C1ωh,z + (C2 + C3ω/z)h = 0 (101)

where
C1 = B1 +B2x0
C2 = B3 − 1

2
B2 ( 1

2
B2 − 1)

C3 = − 1
2
B2 [x0 ( 1

2
B2 + 1) +B1] .

(102)

The function h(z) can then be expanded in a series of Coulomb wavefunctions:

h(z) =

∞∑
L=−∞

aLuL+ν(z) (103)

where uL+ν(z) is any combination of the Coulomb wavefunctions FL+ν(η, z) and GL+ν(η, z). The η = 0,
ν = l+m ordinary spheroidal wavefunction limit of this expansion can no doubt be obtained by an integral
transformation of Baber and Hassé’s equation 30 or 33, but there is little to be gained by further consideration
of such special cases. The Coulomb wavefunctions satisfy the recurrence relation

1

2L + 2ν + 1
RL+1uL+ν+1 − (1/z +QL) uL+ν +

1

2L + 2ν + 1
RLuL+ν−1 = 0 (104)
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and the differential relation

d

dz
uL+ν = − L + ν

2L + 2ν + 1
RL+1uL+ν+1 −QLuL+ν +

L + ν + 1

2L + 2ν + 1
RLuL+ν−1 (105)

where

QL =
η

(L + ν)(L + ν + 1)
and RL =

[
(L + ν)2 + η2

]1/2
L + ν

, (106)

and are solutions of the differential equation

d2

dz2
uL+ν +

[
1− 2η

z
− (L + ν)(L + ν + 1)

z2

]
uL+ν = 0 . (107)

The FL+ν(z) form a solution sequence to recurrence relation (104) that is minimal as L → +∞, and are
the solution to the Coulomb wave equation (107) that is proportional to zL+ν+1 as z → 0. The GL+ν(z)
are irregular solutions to the Coulomb wave equation, are proportional to z−L−ν as z → 0, and form a
dominant solution sequence to recurrence relation (104). FL+ν(z) and GL+ν(z) are normalized such that
the Wronskian

FL+ν,zGL+ν −GL+ν,zFL+ν = 1 (108)

and have the asymptotic form

GL+ν(η, z)± iFL+ν(η, z)
z→∞−→ exp [±i(z − η ln 2z − (L + ν)π

2
+ σL)] (109)

where

σL = − i
2

ln

[
Γ(L + ν + 1 + iη)

Γ(L + ν + 1− iη)

]
. (110)

Coulomb wavefunctions are defined by the integral representations

GL+ν ± iFL+ν =
eπη/2e±iz(2z)−L−ν

[Γ(L + ν + 1 + iη)Γ(L + ν + 1− iη)]
1
2

∫ ∞
0

e−ttL+ν±iη(t∓ 2iz)L+ν∓iηdt , (111)

and afford an alternate way of expressing the confluent hypergeometric functions. (The Coulomb wavefunc-
tions have usually been defined only for non-negative integer orders and real charge parameter η. Equations
(110) and (111) were obtained from the discussion of Coulomb wavefunctions and confluent hypergeometric
functions given by Morse and Feshbach, who define Coulomb wavefunctions in a completely analytic
manner.)

The expansion coefficients aL in series (103) are defined by the recurrence relation

αLaL+1 + βLaL + γLaL−1 = 0 , (112)

where

αL = − ωRL+1

2L + 2ν + 3
[(L + ν + 1)(L + ν + 2)x0 − (L + ν + 2)C1 − C3]

βL = (L + ν)(L + ν + 1) + C2 + ωQL[(L + ν)(L + ν + 1)x0 − C1 − C3]

γL = − ωRL

2L + 2ν − 1
[(L + ν)(L + ν − 1)x0 + (L + ν − 1)C1 − C3] .

The C1, C2, and C3 are given in terms of the B1, B2, and B3 in equations (102). The aL will be minimal as
L→ ±∞ if ν is a solution of the implicit equation

β0 =


α−1γ0
β−1 −

α−2γ−1
β−2 −

α−3γ−2
β−3 − · · ·

+
α0γ1
β1 −

α1γ2
β2 −

α2γ3
β3 − · · ·

 (113)
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Solutions to (113) exist and are periodic with period 1. Roots ν that are integer multiples of 1/2 are usually
spurious (there are some special exceptions). The only solutions ν for which the series (103) will actually
solve the differential equation are those that map to the correct asymptotic values as ω → 0 or as ωx→∞ :
see equation (121).

B. Convergence Properties

Convergence of the Coulomb wavefunction series solutions (103) to the generalized spheroidal wave
equation (1) is similar to that of the Neumann series solutions (86) to the finite dipole wave equation
(82). When ν is a solution to the continued fraction equation (113) the sequence of expansion coefficients
{aL : L = . . . − 2,−1, 0, 1, 2 . . .} is minimal as L → ±∞, but in the usual case that ν is not an
integer the negative L part of the series cannot be truncated and both sequences of Coulomb wavefunctions
{FL+ν : L = . . . − 2,−1, 0, 1, 2 . . .} and {GL+ν : L = . . . − 2,−1, 0, 1, 2 . . .} will be dominant either as
L → +∞ or as L → −∞, or both. The solutions given by expansion (103), though independent, will both
be seen to be irregular as x→ x0.

Convergence properties of the solutions are illustrated by analysis of the limiting behavior of
aLGL+ν(η, ωx) as L → +∞. This behavior will be shared by the L → −∞ part of both series, and
the positive L part of

∑
L
aLFL+ν is obviously convergent. We will here consider only the case when

L2 � |ηω|. From the recurrence relation (112) for the aL, we obtain the limiting ratios

lim
L→+∞

aL
aL−1

=
ωRL

2L2
[x0L + C1] (114)

and
lim

L→−∞

aL
aL+1

=
ωRL

2L2
[x0L− C1] (115)

(the aL being minimal as L→ ±∞), and from the recurrence relation (104) for the Coulomb wavefunctions

lim
L→∞

GL+ν(η, ωx)

GL+ν−1(η, ωx)
∼ 2L

RL

(
1

ωx
+QL−1

)
(L� |ωx|)

and

lim
L→∞

GL+ν+1(η, ωx)

GL+ν−1(η, ωx)
= −1 (1� L� |ωx|) ,

the GL+ν being dominant solutions of recurrence relation (104). If ηω � L2 we immediately obtain

lim
L→∞

aLGL+ν(ωx)

aL−1GL+ν−1(ωx)
=

1

x
(x0 + C1/L) −→

{
x0/x if x0 6= 0
C1/xL if x0 = 0

, (116)

so that the series (103) is absolutely convergent for all x > x0 and diverges at x = x0 The L < 0 part of the
series can be truncated when ν is an integer, and this will happen when η = 0 and Alm is an eigenvalue of
the ordinary spheroidal wave equation. If ν = l+m then the series

∑∞
L=0 aLFL+l+m(0, ωx) will represent

the regular ordinary spheroidal wavefunction.
Expressing, as it does, the limiting form of the ratio of successive terms in the series, expression (116)

tells us not only that the series converges, but also says much about how rapid the convergence is. If for
some ε > 0 we wish to find an N such that∣∣∣∣aNGN+ν(η, ωx)

a0Gν(η, ωx)

∣∣∣∣ < ε

then we can use (116) to estimate ∣∣∣∣aNGN+ν(ωx)

a0Gν(ωx)

∣∣∣∣ = ε ≈
(x0
x

)N
(117)
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(assuming |C1| � Nx0), from which

N ≈ log ε

log(x0/x)
, (118)

which again expresses the divergence of the series as x → x0. As an example, suppose one wished to
compute the irregular ordinary spheroidal wavefunction (with l = m = 0) for ω = 1 at λ = 3 to an
accuracy of approximately seven decimal places. In this case x0 = 2, x = 4, and ε = 10−7. Equation (118)
then estimates N ≈ 23. When actually computed, it turns out that a23 = 1.51 × 10−23 and G23(0, 4) =
4.31 × 1014. The product of the two, a23G23(0, 4) = 6.5 × 10−9, is not unreasonably distant from the
desired value 10−7. Thus expression (118), though not exact, is a useful guide for computational purposes.

C. Solutions as ω → 0.

The solutions ν to equation (113) are periodic with period 1. As ω → 0 the differential equation (101) takes
the limiting form

lim
ω→0

d2h

dz2
+

(
1− 2η

z
+
C2

z2

)
h = 0 (119)

and has solutions
lim
ω→0

h1(z) = Fν0(η, z) and lim
ω→0

h2(z) = Gν0(η, z) , (120)

where
ν0 = −1

2

[
1±

√
1− 4C2

]
. (121)

If we normalize the aL such that amax = a0, then the minimal solution sequence aL to recurrence relation
(112) has the property that aL → 0 as ω → 0 for all L 6= 0. The small ω form of expansion (103) will
then be dominated by the single term a0uν(η, ωx). For larger ω the only solutions ν to equation (113) that
can be used to generate the aL and give a convergent series that actually solves the differential equation are
those ν that are contiguous with the ν0 as ω → 0. The values of ν0 are the same as the values of the order
νa of the asymptotic solutions (22) and (23) given in Sec. II.

D. Asymptotic Behavior

Two independent solutions to the generalized spheroidal wave equation

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0

can now be written

y+(x) = x−B2/2
∞∑

L=−∞
aL [GL+ν(η, z) + iFL+ν(η, z)]

y−(x) = x−B2/2
∞∑

L=−∞
aL [GL+ν(η, z)− iFL+ν(η, z)] .

(122)

The asymptotic form of y+ and y− can be expressed as

lim
x→∞

y±(x) = x−B2/2 exp[±i(ωx− η ln(2ωx)− φ±)] , (123)

where φ+ and φ− are obtained from equations (109) and (122):

φ± = ±i ln

[ ∞∑
L=−∞

aL exp∓i[(L + ν)π
2
− σL]

]
. (124)
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The σL are defined by equation (110). The asymptotic behavior of any combination of these solutions
Y (x) = Aouty+(x)+Ainy−(x) is therefore obtainable from the values of Y (x) and Y,x(x) at any convenient
x at which the matching coefficients Aout and Ain may be determined. Expressions (122), (123), and (124)
are all analytic in ω and x, so there is no reason the phase of the x at which the matching is done need
be the same as the phase of the asymptotic limit desired. This analyticity with the asymptotic form is
the crucial property that makes a representation “truly useful,” and the Coulomb wavefunction expansions
(122) probably express it as well as is possible by anything short of an actual integral representation for the
generalized spheroidal wavefunctions.

E. Values on the ω Branch Cut

The irregular generalized spheroidal wavefunctions have branch cuts in x that emanate from x = 0 and
x = x0. These may be treated in the usual manner using the known values of the indices k1 and k2
of equation (21). There is, however, a branch cut in the frequency ω that is an important consideration
in some physical problems.4 This branch cut starts at ω = 0 and extends downward along the negative
imaginary ω axis. The coulomb wavefunction expansions (122) allow the values of the irregular generalized
spheroidal wavefunctions y+ and y− to be determined on each side of this cut. In terms of the regular
and irregular confluent hypergeometric functions M(a, b, 2iz) and U(a, b, 2iz) as defined by Slater,28 the
Coulomb wavefunctions can be expressed as

GL+ν(η, z)± iFL+ν(η, z) =

(−)L(2z)L+ν+1e±iz

e−πη/2e±iπ(ν+1/2)

[
Γ(L + ν + 1 + iη)

Γ(L + ν + 1− iη)

]±1/2
U(L + ν + 1± iη, 2L + 2ν + 2,∓2iz)

(125)

and

FL+ν(η, z) =

[Γ(L + ν + 1 + iη)Γ(L + ν + 1− iη)]1/2

2eπη/2Γ(2L + 2ν + 2)
(2z)L+ν+1e±izM(L + ν + 1± iη, 2L + 2ν + 2,∓2iz)

(126)
Slater’s equation 13.1.10 then gives the ω branch cut information:

U(L + ν + 1± iη, 2L + 2ν + 2,∓2ize2nπi) = e−4nπiνU(L + ν + 1± iη, 2L + 2ν + 2,∓2iz)

+
(
1− e−4nπiν

) Γ(−2L− 2ν − 1)

Γ(−L− ν ± iη)
M(L + ν + 1± iη, 2L + 2ν + 2,∓2iz)

(127)
Recall that z = ωx. Equations (125) and (127) can be inserted into expansions (122), and the reflexion
property of the gamma function eventually allows the final result:

y±(ωe2nπi) = e−2nπiνy±(ω) + sin 2nπν csc 2πν (e2πη − e∓2πiν)[y+(ω)− y−(ω)] . (128)

Here y+(ω)− y−(ω) = 2ix−B2/2
∑
aLFL+ν(η, ωx). This expression is also valid in the limit when ν is an

integer. It should be kept in mind that the expansion coefficients aL and the phase parameter ν are implicit
functions of ω. They appear, however, to be entire, and their values do not change across the ω branch cut.

F. An Alternate Normalization for the Coulomb Wavefunctions

There exist other normalizations for the Coulomb wavefunctions that should have definite computational ad-
vantages over the usual Coulomb wavefunctions discussed above. These are exemplified by a normalization
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first proposed by Gautschi,6 who defined functions fL+ν and gL+ν by

fL+ν(η, z) = (2L + 2ν + 1)eπη/2
Γ(L + ν + 1)

[Γ(L + ν + 1 + iη)Γ(L + ν + 1− iη)]
1
2

FL+ν(η, z) (129)

gL+ν(η, z) = (2L + 2ν + 1)eπη/2
Γ(L + ν + 1)

[Γ(L + ν + 1 + iη)Γ(L + ν + 1− iη)]
1
2

GL+ν(η, z) (130)

The factor (2L + 2ν + 1)eπη/2 is not absolutely necessary, but it does no harm to retain it. The differential
and recurrence relations obeyed by both fL+ν and gL+ν are

fL+ν,z =
L + ν + 1

2L + 2ν − 1
fL+ν−1 −QLfL+ν −

L + ν

2L + 2ν + 3

[
1 +

η2

(L + ν + 1)2

]
fL+ν+1 (131)

1

z
fL+ν =

1

2L + 2ν − 1
fL+ν−1 −QLfL+ν +

1

2L + 2ν + 3

[
1 +

η2

(L + ν + 1)2

]
fL+ν+1 (132)

where QL = η/(L+ ν)(L+ ν+ 1) as in equation (106). Asymptotic forms for f and g may be expressed as

gL+ν(η, z)± ifL+ν(η, z)
z→∞−→ exp [±i(z − η ln 2z − (L + ν)π

2
+ σ

(±)
L )] (133)

where

σ
(±)
L = ∓i ln

[
(2L + 2ν + 1)eπη/2

Γ(L + ν + 1)

Γ(L + ν + 1∓ iη)

]
.

If we write our solutions (122) to the generalized spheroidal wave equation as

y±(x) = x−B2/2
∞∑

L=−∞
aL [gL+ν(η, z)± ifL+ν(η, z)] (134)

then the asymptotic forms of y+ and y− are given by

lim
x→∞

y±(x) = x−B2/2 exp[±i(ωx− η ln(2ωx)− φ̃±)] (135)

where

φ̃± = ±i ln

[ ∞∑
L=−∞

aL exp∓i[(L + ν)π
2
− σ(±)L ]

]
. (136)

The expansion coefficients aL will satisfy the three-term recurrence relation

αLaL+1 + βLaL + γLaL−1 = 0 , (137)

where now the recurrence coefficients are defined by

αL = − ω

2L + 2ν + 1
[(L + ν + 1)(L + ν + 2)x0 − (L + ν + 2)C1 − C3]

βL = (L + ν)(L + ν + 1) + C2 + ωQL[(L + ν)(L + ν + 1)x0 − C1 − C3]

γL = − ω

2L + 2ν + 1
[(L + ν)(L + ν − 1)x0 + (L + ν − 1)C1 − C3][1 + η2/(L + ν)2] .

The C1, C2, and C3 are given in terms of the B1, B2, and B3 in equations (102). The recurrence relations
(131) and (132) for Gautschi’s Coulomb wavefunctions should be compared with the corresponding relations
(104) and (105) for the usual Coulomb wavefunctions, and the definitions of the αL, βL, and γL for equation
(137) compared with the corresponding definitions for the αL, βL, and γL for equation (112). No square
roots appear in any of the relations using Gautschi’s normalization, a property that will greatly enhance the
speed with which expansions (134) can be evaluated and, by eliminating spurious branch cuts associated
with the unnecessary square roots, will probably enlarge the parameter regions for which the Coulomb
wavefunction expansion is valid.
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VII. SOLUTIONS BY EXPANSION IN SERIES OF CONFLUENT HYPERGEOMETRIC
FUNCTIONS

One last set of representations for the generalized spheroidal wave functions may be obtained by expanding
the solutions y(x) to equation (1) in series of the confluent hypergeometric functions M̃(a, b, z) and
U(a, b, z). Four new representations are obtained. The expansions for the solution that is regular as x→ x0
are shown to be uniformly convergent both at x = x0 and as x→∞. However, convergence of these series
does not appear to be rapid, and the representations have not yet been implemented on a computer.

A. The Confluent Hypergeometric Function Expansion

Again start with equation (1):

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0 .

Solutions can be expanded in the form

y1(x) = e+iωx
∞∑

L=−∞
aLM̃( 1

2
B2 + iη, L + ν1,−2iωx) (138)

y2(x) = e−iωx
∞∑

L=−∞
bLM̃( 1

2
B2 − iη, L + ν2,+2iωx) (139)

y+(x) = e+iωx
∞∑

L=−∞
aLU( 1

2
B2 + iη, L + ν1,−2iωx) (140)

y−(x) = e−iωx
∞∑

L=−∞
bLU( 1

2
B2 − iη, L + ν2,+2iωx) , (141)

where M and U are confluent hypergeometric functions. To demonstrate this substitute

y(x) = e+iωxf(x) , z = −2iωx , and z0 = −2iωx0 , (142)

then the differential equation for f in terms of z is

z(z − z0)
d2f

dz2
+ (D1 +D2z − z2)

df

dz
+ (D3 +D4z)f = 0 (143)

where
D1 = −2iωB1

D2 = B2 − 2iωx0

D3 = B3 + 2ηωx0 + iωB1

D4 = − 1
2
B2 − iη .

(144)

The solutions f(z) to equation (143) can be expanded in a series of the confluent hypergeometric functions
ML(z) and UL(z), whereML and UL denote respectively the regular and irregular confluent hypergeometric
functions

ML(z) ≡ M̃(−D4, L + ν,−2iωx)

and
UL(z) ≡ U(−D4, L + ν,−2iωx)
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where z = −2iωx. M̃(a, b, z) and U(a, b, z) are defined by the integral representations

M̃(a, b, z) =
1

Γ(a)

∫ 1

0
eztta−1(1− t)b−a−1dt Re(b) > Re(a) > 0 (145)

and
U(a, b, z) =

1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt Re(a) > 0, Re(z) > 0 . (146)

Properties of these functions may be found in Slater.28 The definition (145) that I use here for the regular
confluent hypergeometric function M̃(a, b, z) differs from the usual normalization of the Kummer series by
a factor Γ(b− a)/Γ(b) :

M̃(a, b, z) =
Γ(b− a)

Γ(b)

∞∑
n=0

(a)nz
n

(b)nn!
,

where (a)n denotes Pochammer’s symbol: (a)n ≡ a(a + 1)(a + 2) . . . (a + n − 1) and (a)0 ≡ 1. Thus
normalized M̃(a, b, z) obeys the same differential and recurrence relations as does U(a, b, z). Let FL(z)
denote any linear combination of the ML(z) and UL(z) defined above. Then FL solves the confluent
hypergeometric equation

zFL,zz + (L + ν − z)FL,z +D4FL = 0 , (147)

satisfies the differential relations

FL,z = FL −FL+1 (148)

zFL,z = (1− L− ν)FL + (L + ν − 1 +D4)FL−1 , (149)

and obeys the recurrence relation

zFL+1 − (L + ν − 1 + z)FL + (L + ν − 1 +D4)FL−1 = 0 . (150)

The ML(z) form the solution sequence to the recurrence relation (150) that is minimal as L→ +∞, and the
UL(z) form a solution that is dominant. The Wronskian of ML(z) and UL(z) is

ML(z)UL,z(z)−UL(z)ML,z(z) =
Γ(L + ν +D4)

Γ(−D4)
z−L−νez . (151)

The solutions f(z) to equation (143) may now be expressed as

f(z) =

∞∑
L=−∞

aLFL(z) (152)

where ν must be chosen such that the coefficients aL form a solution sequence minimal as L→ ±∞ of the
recurrence relation

αLaL+1 + βLaL + γLaL−1 = 0 (153)

where
αL = −(L + ν +D4)(L + ν + 1−D2 + z0)

βL = (L + ν)(L + ν −D2 + 2z0 − 1) + (D4 − 1)z0 + (D1 +D2 +D3)

γL = −(L + ν − 1)z0 −D1 ,

(154)

or, in the current case where the Di are given by equations (144),

αL = −(L + ν + 1−B2)(L + ν − 1
2B2 − iη)

βL = (L + ν)(L + ν − 1−B2 − 2iωx0) + iωx0(B2 −B1/x0) +B2 +B3

γL = +2iωx0(L + ν − 1 +B1/x0) .
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The parameter ν must solve the implicit equation

β0 =


α−1γ0
β−1 −

α−2γ−1
β−2 −

α−3γ−2
β−3 − · · ·

+
α0γ1
β1 −

α1γ2
β2 −

α2γ3
β3 − · · ·

 (155)

The solutions ν to equation (155) are probably periodic. Experience with the Coulomb wave function
expansion suggests that the correct values of ν will be those that are contiguous as ω → 0 with the ω = 0
roots of (155), that is, the values ν0 that make β0 = 0 when ω = 0 :

ν0 = 1
2

[
B2 + 1±

√
B2(B2 − 2)− 4B3 + 1

]
(156)

B. Convergence Properties

If the parameter ν is chosen to satisfy equation (155), then the aL of equation (153) will be minimal as
L→∞ and successive aL will have the limiting ratios

lim
L→+∞

aL
aL−1

=
−2iωx0

L

[
1 +

1

L
(B2 +B1/x0 − ν) +O(L−2)

]
(157)

and
lim

L→−∞

aL
aL+1

= 1 +
1

L
(2− 1

2
B2 − iη) +O(L−2) . (158)

Assume that both the ML and the UL are dominant solutions to recurrence relation (150) as L → −∞, and
denote them again by FL. Successive FL will have the limiting ratios

lim
L→−∞

FL
FL+1

= 1 +
1

L
( 1
2
B2 + iη) +O(L−2) . (159)

As L→ +∞ the ML are minimal,

lim
L→+∞

ML

ML−1
= 1− 1

L
( 1
2
B2 + iη) +O(L−2) , (160)

while the UL are dominant:

lim
L→+∞

UL

UL−1
=

L

−2iωx

[
1 +

1

L
(2ν − 2) +O(L−2)

]
. (161)

From equations (158) and (159) we see that

lim
L→−∞

aLFL
aL+1FL+1

= 1 +
2

L
+O(L−2) (162)

so that the negative L part of series (152) is absolutely (albeit slowly) convergent for FL either ML or UL.
From (157) and (160)

lim
L→+∞

aLML

aL−1ML−1
=
−2iωx0

L

[
1 +

1

L
( 1
2
B2 +B1/x0 − iη) +O(L−2)

]
, (163)

and from (157) and (161)

lim
L→+∞

aLUL

aL−1UL−1
=
x0
x

[
1 +

1

L
(B2 +B1/x0 − ν − 2iωx(ν − 2)) +O(L−2)

]
. (164)
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Therefore
∑
aLUL converges for all x such that |x| > |x0| , and

∑
aLML converges, amusingly enough,

for all x.
The preceding arguments may be repeated using in equation (142) the alternate substitutions

y(x) = e−iωxf(x) , z = +2iωx , and z0 = +2iωx0 , (165)

which yield two final representations for the generalized spheroidal wave functions:

y2(x) = e−iωx
∞∑

L=−∞
bLM̃( 1

2
B2 − iη, L + ν,+2iωx) (166)

and

y−(x) = e−iωx
∞∑

L=−∞
bLU( 1

2
B2 − iη, L + ν,+2iωx) (167)

where the expansion coefficients bL are again a solution sequence minimal as L → ±∞ of a three-term
recurrence relation

αLbL+1 + βLbL + γLbL−1 = 0 , (168)

with recurrence coefficients αL, βL, and γL given by

αL = −(L + ν + 1−B2)(L + ν − 1
2B2 + iη)

βL = (L + ν)(L + ν − 1−B2 + 2iωx0)− iωx0(B2 −B1/x0) +B2 +B3

γL = −2iωx0(L + ν − 1 +B1/x0) ,

which together with our first two confluent hypergeometric function solutions

y1(x) = e+iωx
∞∑

L=−∞
aLM̃( 1

2
B2 + iη, L + ν,−2iωx) (169)

and

y+(x) = e+iωx
∞∑

L=−∞
aLU( 1

2
B2 + iη, L + ν,−2iωx) (170)

constitute the last of our new representations for the generalized spheroidal wave functions. Note that the
ν that solve equation (155) for the expansion coefficients bL using the α, β, and γ of equation (168) will
probably not be the same ν that solve the equation for the aL using the α, β, and γ of equation (153). I
have not written computer programs to generate any of these confluent hypergeometric function series, but
equation (162) suggests that

lim
L→−∞

aLFL ≈ O(L−2) ,

so that roughly 10N terms will be needed if the series (166), (167), (169), or (170) are to be summed to N
figures accuracy. While one could hope that this is only a worst-case estimate and, at least for the series of
the regular functions M̃( 1

2
B2 ± iη, L + ν,∓2iωx) and |x| ≈ 1, that the series can in practice be made to

converge much faster (perhaps with the help of a sequence accelerating algorithm), such speculation must
be regarded as “wishful thinking” pending more detailed analysis.
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C. Asymptotic Behavior

The limiting forms of the confluent hypergeometric functions for large values of the argument are

lim
|z|→∞

ML(z) = e∓iπD4zD4 +
Γ(L + ν +D4)

Γ(−D4)
ezz−L−ν−D4

[
1 +O(z−1)

]
(171)

and
lim
|z|→∞

UL(z) = zD4 (172)

The upper sign is taken in (171) if −π/2 < arg(z) < 3π/2, and the lower sign is taken if −3π/2 <
arg(z) ≤ −π/2. The factor Γ(L + ν + D4)z

−L−ν−D4 makes the large |z| limit of the negative L part
of series (166) and (169) difficult to evaluate. However, the series (167) and (170) involving the irregular
functions UL(z) are relatively simple, and we may express the limiting forms of these solutions as

lim
|x|→∞

y+(x) = lim
|x|→∞

e+iωx
∞∑

L=−∞
aLU( 1

2
B2 + iη, L + ν,−2iωx)

= (−2iωx)−B2/2−iηe+iωx
∞∑

L=−∞
aL

(173)

and

lim
|x|→∞

y−(x) = lim
|x|→∞

e−iωx
∞∑

L=−∞
bLU( 1

2
B2 − iη, L + ν,+2iωx)

= (+2iωx)−B2/2+iηe−iωx
∞∑

L=−∞
bL .

(174)

As noted before, these sums are only slowly convergent, and expansions (167) and (170) probably have no
computational advantage over the Jaffé-type solutions discussed in Sec. IV. However, the convergence, no
matter how slow, of the regular solution expansions (166) and (167) over the entire interval [x0 ≤ x < ∞)
may give them some unique analytic utility.
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VIII. A CONFLUENT GENERALIZED SPHEROIDAL WAVE EQUATION

A. The Confluent Equation

When x0 = 0 equation (1) becomes

x2y,xx + (B1 +B2x)y,x + (ω2x2 − 2ηωx+B3)y = 0 (175)

If y(x) = x−B2/2h and z = ωx then the differential equation for h(z) is

z2h,zz + C1ωh,z + [z2 − 2ηz + C2 + C3ω/z]h = 0 (176)

where C1 = B1, C2 = B3 − 1
2B2

(
1
2B2 − 1

)
, and C3 = −1

2B1B2 .
In the Sec. 6 we showed that h could be expanded as

h(x) =

∞∑
L=−∞

aLuL+ν(η, ωx) (177)

(where uL+ν is a Coulomb wavefunction), and that the expansion converges even in the present case when
x0 = 0. This property is intriguing, because as x0 → 0 the point x = 0 becomes a confluent singular point,
and convergent expansions of solutions to differential equations near such points are generally difficult to
obtain. Note that the point x = 0 is an irregular singular point only when B1 6= 0: when B1 = 0 equations
(175) is a simple confluent hypergeometric equation, equation (176) is the Coulomb wave equation, and the
solutions y(x) can be expressed as

y(x) = x−
1
2
B2uν (η, ωx) , where ν(ν + 1) = −C2 =

1

2
B2(

1

2
B2 − 1)−B3 . (178)

The solution regular at x = 0 is uν = Fν(η, ωx) , and an irregular solution is given by uν = Gν(η, ωx) .
However, when B1 6= 0 the point x = 0 is an irregular singular point and expansion (177) must be used

for the two solutions, neither of which will converge at x = 0. When x0 6= 0 the solutions near x = 0 could
be generated via the Jaffé expansion

∑
an[(x − x0)/x]n. When x0 = 0 the Jaffé expansion does not exist

and another approach must be taken towards generating solutions good near that point. This can be done by
exploiting the symmetry that exists between the point x = 0 and the point at∞ : both are confluent singular
points and with the substitutions

y(x) = eiωx+B1/2xx1−B2/2f (ξ) , ξ =
iB1

2x

equation (175) becomes

ξ2f,ξξ + C̃1ωf,ξ + [ξ2 − 2η̃ξ + C̃2 + C̃3ω/ξ]f = 0 (179)

where
C̃1 = C1 = B1, η̃ = −i(12B2 − 1)

C̃2 = C2 = B3 − 1
2B2

(
1
2B2 − 1

)
ξ = iB1/2x

C̃3 = −(1 + iη)B1 .

Hence solutions to equation (175) can also be written

y(x) = x1−B2/2eiωx+B1/2x
∞∑

L=−∞
bLuL+ν(η̃, ξ) . (180)

Expansion (180) is uniformly convergent as x→ 0 . The expansion coefficients aL in expression (177) and
the coefficients bL in expression (180) are both defined by equations (112) and (113) using respectively the
Ci of (176) and the C̃i of (179).
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B. The Kerr Limit of Black Hole Rotation

An example of the confluent equation occurs at the Kerr limit of black hole rotation, where b = 0 and
a = 1/2 in equations (15) and (19). If it were physically possible, the confluence of the event horizon at
x = x0 with the singularity at x = 0 would result in a naked singularity. The current theory of gravitation
does not allow naked singularities to form,42 but an understanding of the behaviour of the solutions to the
wave equation (15) at the Kerr limit might allow some insight regarding the behaviour of solutions near that
limit. At the Kerr limit equation (19) becomes

x2y,xx + [2(1− s− iω)x− i(ω −m)]y,x
+ [ω2x2 + 2(ω + is)ωx+ 3

4ω
2 + (2s− 1)iω − 2s−Alm]y = 0 ,

(181)

which is of the form (175). The substitutions y = xs+iω−1h(z) and z = ωx yield

z2h,zz − iω(ω −m)h,z + [z2 − 2ηz + C2 + iω(ω −m)(1− s− iω)/z]h = 0 (182)

where C2 = 7
4ω

2− s(s+ 1)−Alm and η = −ω− is , which corresponds to equation (176). Similarly, the
substitution y = xs+iω exp i[ωx− (ω −m)/2x]f(ξ) with ξ = (ω −m)/2x gives

ξ2f,ξξ − iω(ω −m)f,ξ + [ξ2 − 2η̃ξ + C2 + iω(ω −m)(1 + s− iω)/ξ]f = 0 (183)

where η̃ = −ω + is . Two interesting limiting cases of equations (182) and (183) occur when ω ≈ 0 and
when ω ≈ m. The occurrence of the product iω(ω −m) allows us to treat both cases in the same manner:

Let C1 = −i(ω −m), C3 = i(ω −m)(1− s− iω), C̃3 = i(ω −m)(1 + s− iω), and η̃ = −ω + is.
Then expansions corresponding to (177) and (180) that are respectively convergent for x and 1/x bounded
away from 0 are

y(∞)(x) = xs+iω−1
∞∑

L=−∞
aLuL+ν(−ω − is, ωx) (184)

y(0)(x) = xs+iωeiωx−i(ω−m)/2x
∞∑

L=−∞
bLuL+ν(−ω + is, (ω −m)/2x) . (185)

Again, uL+ν(η, z) denotes a Coulomb wavefunction. The ν in equation (184) is chosen to satisfy (113) and
makes the aL the minimal solution of

αLaL+1 + βLaL + γLaL−1 = 0 , (186)

where

αL = −iω(ω −m)RL+1(η)(L + ν + 1 + s+ iω)/(2L + 2ν + 3)

βL = (L + ν)(L + ν + 1) + C2 + iω(ω −m)(s+ iω)QL(η) (187)

γL = +iω(ω −m)RL(η)(L + ν − s− iω)/(2L + 2ν − 1) .

The ν and bL of equation (185) are generated from

α̃LbL+1 + β̃LbL + γ̃LbL−1 = 0 , (188)

where the α̃L, β̃L, and γ̃L are the same as the α, β, and γ of equation (187) but with η replaced by η̃ and C3

replaced by C̃3 (i.e., s is replaced by −s). As ω → 0 or as ω → m only the a0 and b0 terms contribute to
the sums in (184) and (185), so that limiting forms for y(∞) and y(0) are (with a0 = b0 = 1)

lim
ω→0,m

y(∞)(x) ∼ xs+iω−1uν(−ω − is, ωx) (189)

lim
ω→0,m

y(0)(x) ∼ xs+iωeiωx−i(ω−m)/2xuν(−ω + is, (ω −m)/2x) , (190)
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where ν(ν + 1) = −C2(ω = 0,m). Expressions (189) and (190) are valid for values of the rotation
parameter such that 0 < b� 1, not just b = 0. This generalization may be demonstrated by retaining b and
interchanging w and ω −m when deriving the definitions (187) for the recurrence coefficients αL, βL, and
γL.

The physically relevant field function is Teukolsky’s Rlm(r), which is related to y(x) by equation (17):

R(r) = (r − r−)k−(r − r+)k+y(x) ,

where x = r − r−. Again, r± = (1± b)/2, k− = −s+ i(ωr− − am)/b, k+ = −s− i(ωr+ − am)/b, and
a = 1

2(1− b2)1/2. Taking the limit

lim
b→0

(r − r−)k−(r − r+)k+ = x−2s−iωei(ω−m)/2x ,

we find the expansions for R(r) that are respectively convergent away from r = 1/2 and away from r =∞
are, with x = r − 1/2 ,

R
(∞)
± (x) = x−s−1ei(ω−m)/2x

∞∑
L=−∞

aL[GL+ν(−ω − is, ωx)± iFL+ν(−ω − is, ωx)] (191)

R
(0)
± (x) = x−seiωx

∞∑
L=−∞

bL[GL+ν(−ω + is, (ω −m)/2x)± iFL+ν(−ω + is, (ω −m)/2x)] (192)

Equations (109) give the behaviour of the Coulomb wavefunctions for large magnitudes of the argument,
and from them we obtain the desired behaviour of the two solutions near x = 0 :

lim
x→0

R
(0)
+ (x) ∼ [(ω −m)/2x]iωei(ω−m)/2x (193)

lim
x→0

R
(0)
− (x) ∼ x−2s[(ω −m)/2x]−iωe−i(ω−m)/2x . (194)

With the sign convention (e−iωt) of equation (13) it is R(0)
+ (x) that describes the case of radiation going into

the singularity.
A black hole rotates at the Kerr limit with angular velocity dφ/dt = 1 in the normalized units used here,

and a wave train with frequency ω = m at this limit corotates with the singularity. If |ω| � 1 and |ωx| � 1
expansion (192) is dominated by the b0 term and may be approximated (with b0 = 1) by

R
(0)
± (x) ≈ x−seiωx[Gν(−ω + is, (ω −m)/2x)± iFν(−ω + is, (ω −m)/2x)] (195)

where ν(ν + 1) = −C2(ω). This result also holds for |ω − m| � 1 and |ωx| � 1/2. Similarly, if
|x/(ω −m)| � 1, then by equation (116) the a0 term will dominate expansion (191) and R(∞)

± may be
approximated (with a0 = 1) by

R
(∞)
± (x) ≈ x−s−1ei(ω−m)/2x[Gν(−ω − is, ωx)± iFν(−ω − is, ωx)] . (196)

These approximations may be used whenever the rotation parameter b � 1. A different approach to
approximating the Teukolsky function Rlm near the Kerr limit may be found in Teukolsky and Press,43

and has been used by Detweiler.44
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C. Review of the Representations

In this study I have demonstrated ten analytic series representations for the solutions to the generalized
spheroidal wave equation

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0

on the interval [0 ≤ x <∞). They are, together with the asymptotic form,

• The regular power series solutions of the Jaffé type (Sec. IV A):

y1(x) = e+iωxx−
1
2B2−iη

∞∑
n=0

arn

(
x− x0
x

)n
(197)

and

y2(x) = e−iωxx−
1
2B2+iη

∞∑
n=0

brn

(
x− x0
x

)n
(198)

cf. equations (39) and (49). These two expansions are proportional by a factor e2iωx0ar0/b
r
0 and

represent the generalized spheroidal wave function that is regular at x = x0. They converge for all x
such that |(x − x0)/x| < 1. The convergence is uniform only when ω is an eigenfrequency and the
expansion coefficients form minimal solutions to their respective recurrence relations (40) and (50).
When ω is not an eigenfrequency the convergence of these series is not uniform and the analytic forms
of y1(x) and y2(x) as x→∞ cannot be deduced.

• The irregular confluent hypergeometric function solutions of Hylleraas type (Sec. IV C):

y+(x) = e+iωx
∞∑
n=0

arn(B2 +B1/x0)nU( 1
2
B2 + iη + n,−B1/x0,−2iωx) (199)

y−(x) = e−iωx
∞∑
n=0

brn(B2 +B1/x0)nU( 1
2
B2 − iη + n,−B1/x0,+2iωx) (200)

cf. equations (73) and (74). These solutions are always independent and correspond, respectively,
to the asymptotic forms ar0x

− 1
2B2e+i(ωx−η lnx) and br0x

− 1
2B2e−i(ωx−η lnx). In general the expansions

for y+ and y− do not converge as x → x0, and these solutions are usually irregular at that point.
The exception occurs when ω is an eigenfrequency and either the arn or the brn (but never both) are
minimal as n → ∞. In this case these irregular Hylleraas solutions become regular eigensolutions
proportional to the regular Jaffé solutions y1 and y2, equations (39) and (49).

• The irregular Coulomb wavefunction solutions of the generalized Stratton type (Sec. VI):

y+(x) = x−B2/2
∞∑

L=−∞
aL [GL+ν(η, z) + iFL+ν(η, z)]

y−(x) = x−B2/2
∞∑

L=−∞
aL [GL+ν(η, z)− iFL+ν(η, z)] .

(201)

cf. equations (122). The asymptotic forms of these expansions are given by equations (123):

lim
x→∞

y±(x) = x−B2/2 exp[±i(ωx− η ln(2ωx)− φ±)] , (202)

where the φ± and the necessary σL are given by equations (124) and (110). The expansion coefficients
aL and the phase factor ν are defined by equations (112), (113), and (121).
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• The asymptotic solutions in terms of Coulomb wavefunctions (Sec. II):

lim
x→∞

y±(x) = xB1/2x0(x− x0)−
1
2
(B2+B1/x0) [Gνa(η, ωx)± iFνa(η, ωx)]

[
1 +O(x−3)

]
(203)

cf. equations (22) and (23). The asymptotic phase parameter νa usually differs markedly from the
Coulomb wavefunction phase parameter ν, and the asymptotic form can provide a check on the full
expansion in the regions of large x for which both are valid.

• The confluent hypergeometric function expansions of Sec. VII:

y1(x) = e+iωx
∞∑

L=−∞
aLM̃( 1

2
B2 + iη, L + ν,−2iωx)

y2(x) = e−iωx
∞∑

L=−∞
bLM̃( 1

2
B2 − iη, L + ν,+2iωx)

y+(x) = e+iωx
∞∑

L=−∞
aLU( 1

2
B2 + iη, L + ν,−2iωx)

y−(x) = e−iωx
∞∑

L=−∞
bLU( 1

2
B2 − iη, L + ν,+2iωx)

cf. equations (166), (167), (169), and (170). The description of these solutions given in Sec.
VII is brief enough (as befits the preliminary nature of their derivation) to make further discussion
unnecessary.

D. Notes on the Computer Implementation

The expressions for which I have written FORTRAN subroutines to evaluate are those for the regular Jaffé
solution

y1(x) = e+iωxx−
1
2B2−iη

∞∑
n=0

arn

(
x− x0
x

)n
, (204)

the Coulomb wave function expansions (122)

y±(x) = x−B2/2
∞∑

L=−∞
aL [GL+ν(η, z)± iFL+ν(η, z)] , (205)

and the associated asymptotic forms (22) and (23)

lim
x→∞

y±(x) = xB1/2x0(x− x0)−
1
2
(B2+B1/x0) [Gνa(η, ωx)± iFνa(η, ωx)]

[
1 +O(x−3)

]
. (206)

The Jaffé solutions are regular and analytic as x → x0, but for general ω are divergent as x → ∞. The
Coulomb wavefunction expansions are analytic as x → ∞, but diverge as x → x0. The combination of
the two representations provides a powerful computational tool for analysis of physical systems described
by generalized spheroidal wave equations. The parameter regions in which the Coulomb wavefunction
expansion is valid often overlap the regions of validity of the Jaffé expansions, and frequently those of the
asymptotic Coulomb wavefunction solutions as well, so the three different methods of solution can be used
as checks against each other.

The regular Jaffé solution is a simple power series and coding it was straightforward. However, the
Coulomb wavefunction expansions are irregular as x → x0, and usually have a branch cut associated with
that point. Additional branch cuts arise in the continued fractions that define the expansion coefficients
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aL and the phase parameter ν. Some of these cuts no doubt are inherent to the fractions themselves, but
others are spurious and are due to the square roots that occur in the recurrence relations both for the aL and
for the Coulomb wavefunctions. I showed in Sec. VI F how the square roots could be avoided by use of
Gautschi’s normalizations, but the current (July 1985) version of the program implements equation (122)
with the usually defined Coulomb wavefunctions (equation (111)). The branch cuts are a genuine problem
since the generalized spheroidal wavefunctions are functions of seven complex parameters: x, x0, η, ω, B1,
B2, and B3. The Coulomb wavefunctions are computed using an analytic extension of Steed’s algorithm,45

and branch cuts in this subroutine alone restrict the product ωx to lie in the fourth quadrant of the complex
ωx plane.

It probably is not possible with algorithms of this complexity to fully predict the ranges of the
parameters for which they are valid, but fortunately there are enough self-consistency checks (computation
of wronskians, independent sums of series for the derivatives, etc.) that the accuracy of the program that
implements the Coulomb wavefunction expansion can be determined internally as it is run. Although one
usually cannot predict a priori whether the program will run with a given set of arguments, the relative
error of the calculation is accurately supplied at execution. External checks on the program’s results, while
comforting when they are obtainable, are not strictly necessary for reliable use.

The single precision version of the program typically returns five or six decimal places of accuracy
on a 36-bit DEC20. (A double precision version using the COMPLEX*16 variable type available on VAX

computers gives between twelve and sixteen places.) While I have found these algorithms to be quite
powerful in the analysis of the perturbation response of Schwarzschild black holes,4 the programs are not
a complete panacea to the problem of generating generalized spheroidal wavefunctions, as there are values
of the parameters for which it is not possible to find a value of the phase parameter ν that satisfies equation
(113). However, I do believe that the elements of analyticity inherent to Jaffé’s solutions and the Coulomb
wavefunction expansion provide, in the regions where they are valid, a refreshing alternative to the usual
recourse of brute force numerical integration of the generalized spheroidal wave equation.

The programs are fully portable and will be described in detail in a forthcoming article.46 Future study
should be in the direction of implementing Gautschi’s normalization for the Coulomb wavefunctions (Sec.
VI F), and the irregular Hylleraas solutions (Sec. IV C). Jen and Hu’s high frequency approximation41 for
the ordinary spheroidal wavefunctions should be extended to the generalized functions. Further investigation
should be made of the confluent hypergeometric function expansions discussed in Sec. VII.
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APPENDIX A. LAGUERRE POLYNOMIALS

The Laguerre polynomials used in this paper are the Laguerre polynomials defined by Slater,28 and in
Gradshteyn and Ryzhik.29 They are generated by

∞∑
n=0

znLαn(x) = (1− z)−α−1exz/(z−1) (|z| < 1)

obey the recurrence relation

(n+ 1)Lαn+1(z)− (2n+ α+ 1− z)Lαn(z) + (n+ α)Lαn−1(z) = 0

xLα0 (x) = −Lα1 (x) + (α+ 1)Lα0 (x)

and satisfy the differential property

x
d

dx
Lαn(x) = −(n+ 1)Lαn+1(x) + (2n+ α+ 1)Lαn(x)− (n+ α)Lαn−1(x)

d

dx
Lα0 (x) = 0 .

Laguerre polynomials are solutions to the confluent hypergeometic equation

x
d2

dx2
Lαn(x) + (α+ 1− x)

d

dx
Lαn(x) + nLαn(x) = 0 ,

and Lαn(x) is related to Kummer’s function 1F1(a, b, x) by

Lαn(x) =
Γ(α+ n+ 1)

n!Γ(α+ 1)
1F1(−n, α+ 1, x)

There are several different normalizations of Laguerre polynomials currently in use. Three of them are
listed below together with the names of the authors that have used them, and their relation to the Laguerre
polynomials as normalized by Slater.

1. A. Messiah47 and Morse and Feshbach10:

Lmn (Messiah, Morse and Feshbach) = (n+m)!Lmn (Slater)

2. E.C. Titchmarsh48:

Lmn (Titchmarsh) = n!Lmn (Slater)

3. E. Hylleraas7:

Lmn (Hylleraas) = Lmn−m (Slater)
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APPENDIX B. AN INTEGRAL TRANSFORM

An outline of a proof of the validity of equation (62) is given using the standard theory of integral
transforms.49

Start with equation (1):

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0 .

With the substitution y(x) = eiωxf(x) and the restriction iη = B2/2− 1 the differential equation for f is

Lx {f(x)} = 0 (B1)

where the differential operator Lx is defined by

Lx ≡

{
x(x− x0) d2

dx2
+ [B1 +B2x+ 2iωx(x− x0)] ddx

+[2iω(B2 − 1)(x− x0) + iωx0(B2 +B1/x0) +B3]

}
.

With the further substitution f(x) = x1+B1/x0g(x), the differential equation for g(x) is

Mx {g(x)} = 0

where the differential operatorMx is in turn defined by

Mx ≡

{
x(x− x0) d2

dx2
+ [−B1 − 2x0 + (2 +B2 + 2B1/x0)x+ 2iωx(x− x0)] ddx

+[(B2 +B1/x0)(2iωx− iωx0 + 1 +B1/x0) +B3]

}
so that Lx{f} = x1+B1/x0Mx{g}. The adjoint operator to Lx is

L̄x =

{
x(x− x0) d2

dx2
+ [−B1 − 2x0 + (4−B2)x− 2iωx(x− x0)] ddx

+[2iω(B2 − 3)x− iωx0(B2 −B1/x0 − 4) + 2−B2 +B3]

}
.

The kernel
K(x, t) ≡ e2iωx(t−x0)/x0(t− x0)B2+B1/x0−1

has the property thatMx {K(x, t)} = L̄t {K(x, t)}. Hence if we write

f̄(x) = x1+B1/x0

∫
c
K(x, t)f(t)dt (B2)

we can operate with Lx on f̄ and find successively

Lx
{
f̄(x)

}
= Lx

{
x1+B1/x0

∫
c
K(x, t)f(t)dt

}
= x1+B1/x0

∫
c
(Mx {K(x, t)}) f(t)dt

= x1+B1/x0

∫
c

(
L̄t {K(x, t)}

)
f(t)dt

= x1+B1/x0

[∫
c
K(x, t)Lt {f(t)} dt+

∫
c

d

dt
P (x, t) dt

]
where the bilinear concomitant P (x, t) is given by

P (x, t) =

{
t(t− x0)[f(t) ddtK(x, t)−K(x, t) ddtf(t)] +

[2iωt2 + (B2 + 2B1/x0 − 2iωx0)t−B1 − x0]K(x, t)f(t)

}
.

Therefore two functions f̄(x) and f(x) related by equation (B2) will both satisfy differential equation (B1)
provided the contour c is chosen such that the integral converges and the value of P (x, t) is the same at each
end of the contour.
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APPENDIX C. A SECOND SOLUTION BY EXPANSION IN IRREGULAR CONFLUENT
HYPERGEOMETRIC FUNCTIONS

The validity of equation (70) is proven for arbitrary η, and convergence properties of the expansion are
discussed. Start with equation (1):

x(x− x0)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
[
ω2x(x− x0)− 2ηω(x− x0) +B3

]
y = 0

The substitution y(x) = e+iωxf(x) yields equation (56):

x(x− x0)f,xx + [B1 +B2x+ 2iωx(x− x0)]f,x + [(B2 + 2iη)iωx+ 2ηωx0 + iωB1 +B3]f = 0

which with the substitutions z = −2iωx and z0 = −2iωx0 can be more suggestively written as

z(z − z0)
d2f

dz2
+ (D1 +D2z − z2)

df

dz
+ (D3 +D4z)f = 0 (C1)

where
D1 = −2iωB1

D2 = B2 − 2iωx0

D3 = B3 + 2ηωx0 + iωB1

D4 = − 1
2
B2 − iη .

(C2)

We expand f(z) as

f(z) =
∞∑
n=0

bnU(a+ n,−B1/x0, z) (C3)

where the U(a+ n,−B1/x0, z) are irregular solutions to the confluent hypergeometric equation

zUn,zz − (B1/x0 + z)Un,z − (a+ n)Un = 0 . (C4)

I have denoted U(a + n,−B1/x0, z) by Un for notational convenience, and the parameter a is to be
determined. The confluent hypergeometric functions used here are those defined by Slater.28 They satisfy
the differential property

zUn,z = −(n+ a)Un + (n+ a)(n+ a+ 1 +B1/x0)Un+1 (C5)

and are a solution that is minimal as n→∞ of the recurrence relation

Un−1 − [2(n+ a) +B1/x0 + z]Un + (n+ a)(n+ a+ 1 +B1/x0)Un+1 = 0 . (C6)

Substituting (C3) into (C1) and using (C4), (C5), and (C6) we obtain
∞∑
n=0

bn {(n+ a−B2/2− iη)Un−1

+(n+ a)(n+ a+ 1 +B1/x0)(n+ a+B2/2− iη +B1/x0)Un+1

−
[
2(n+ a)2 + (2B1/x0 − 2iη − 2iωx0)(n+ a)

−(2ηωx0 + (B2/2 + iη)B1/x0 + iωB1 +B3)] Un} = 0

(C7)

The coefficient of U−1 must vanish if the series is to start at n = 0, so we must fix a to be a = B2/2 + iη.
Equation (C7) can then be re-indexed to yield

(ᾱ0b1 + β̄0b0)U0 +
∞∑
n=1

(ᾱnbn+1 + β̄nbn + γ̄nbn−1)Un = 0 (C8)

48



where

ᾱn = n+ 1

β̄n = −[2n2 + 2(B2 +B1/x0 + iη − iωx0)n+ (B2 +B1/x0)(B2/2 + iη − iωx0)−B3]

γ̄n = (n+B2/2 + iη − 1)(n+B2/2 + iη +B1/x0)(n− 1 +B2 +B1/x0)

Equation (C8) can hold only if the coefficient of each Un vanishes. Letting bn = Γ(B2 +B1/x0 + n)an in
expansion (C3) and recurrence relation (C8), we can obtain as the recurrence relation for the an

α0a1 + β0a0 = 0

αnan+1 + βnan + γnan−1 = 0 n = 1, 2 . . . (C9)

where
αn = (n+ 1)(n+B2 +B1/x0)

βn =

{
−2n2 − 2[B2 + i(η − ωx0) +B1/x0]n
−[(B2/2 + iη)(B2 +B1/x0)− iω(B1 +B2x0)−B3]

}
γn = (n− 1 +B2/2 + iη)(n+B2/2 + iη +B1/x0)

(C10)

which is the same recurrence relation as for the Jaffé coefficients, equation (41).
Convergence of series (C3) may be analyzed by considering the sequence of functions

{Un, n = 0, 1, 2 . . .} defined by Un = Γ(c+ n)U(a, b, z), where a = B2/2 + iη, b = −B1/x0, and
c = B2 +B1/x0. The Un are a minimal solution to the recurrence relation

(n+ a)(n+ a+ 1− b)/(n+ c)Un+1 − (2n+ 2a− b+ z)Un + (n− 1 + c)Un−1 = 0 (C11)

which, after dividing by n and retaining terms to O(1/n), takes the limiting form

[1 + (2a+ 1− b− c)/n]Un+1 − [2 + (2a− b+ z)/n]Un + [1 + (c− 1)/n]Un−1 +O(n−2) ≈ 0

Hence

lim
n→∞

Un+1

Un

= 1−
√
− z
n
.

See the convergence discussion in Sec. 4a. Here z = −2iωx and the branch of the square root is taken
such that Re(

√
−z) ≥ 0 (the Un being a minimal solution to (C6)). We do not consider the case when z is

positive real. Since
lim
n→∞

an+1

an
= 1±

√
−2iωx0/n

(see equations (42) and (44)), our final result is that the limiting ratio of successive terms of series (C3) is
given by

lim
n→∞

bn+1U(a+ n+ 1, b,−2iωx)

bnU(a+ n, b,−2iωx)
= 1−

√
−2iωx±

√
−2iωx0√

n
. (C12)

The (+) sign is obtained when ω is an eigenfrequency and the an are themselves a minimal solution to
recurrence relation (C9). Then the series converges at x = x0. When ω is not an eigenfrequency the an are
dominant and the (−) sign prevails in equation (C12). In this case the series converges for all x > x0, but
diverges when x = x0. This is precisely the behaviour expected of a second solution.
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